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0 The problem of the electromagnetic origin of the
electron mass has a long history. It first was
formulated in the classical theory when in 1881
Thompson demonstrated that the self-energy of
the electromagnetic field contributes to the
inertial mass of a charged particle.

This idea was then elaborated in the works by
Lorentz [1989], Abraham [1903], Poincaré [1905],
Fermi [1921] and others.
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For a simple model of a uniformly charged sphere
of radius ¢ the electrostatic energy is E=e’/¢.
However it was shown by Abraham [1904-1905] the
relation between energy and momentum for such a
particle differs from the standard one by a factor
4/3. This factor disappears if one includes in the
definition of the self-energy a contribution of
additional (non-electromagnetic) forces that are
required to make the system stable. To solve 4/3-
problem Poincaré [1906] introduced special sort of
non-electromagnetic pressure.




|= diverges and, hence, should be M

renormalized. A classical self-energy of pointlike charges
suffers similar divergences. Quantum field theory provides
us with methods to deal with this problem systematically.

Classical self-energy of an electron can be derived as the
limit of its quantum value [Vilenkin and Fomin, Efimov]

We apply QFT methods to resolve the problems with
ambiguities and model dependence of the classical self-
energy of charged particles.

o In higher dimensions these problems are much more
serious than in four dimensions, and new features appear.
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We consider static scalar charges in the

gravitational field of higher dimensional
black holes.

In this case radiation-reaction effects vanish.




We will show that unexpected contributions

to the self-energy E=m «/I J. | and self-force
appear in odd-dimensional spacetimes.
This effect is classical but is closely related
to quantum conformal anomaly.
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Formally the functional of the self-energy E=m,/|g, | ofa
charge distribution is invariant under transformations of the

static metric.
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similar to the conformal anomaly in QFT.



some simple cases, like

homogeneous gravitational field, the self-
energy can be calculated exactly and we can test
our approach.

In 4D the energy of an electric charge in a
homogeneous gravitational field is reduced by
an amount proportional to its acceleration.
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For calculations of the self-energy of static
charges one has to know only static Green
functions.

Fortunately, in some interesting cases: static
charges near 4-dimensional Schwarcschild or
Reissner-Nordstrom black holes the static Green
functions are known exactly

[Copson (1928), Leaute-Linet (1976); Linet
(1976)].



an additional positive energy due to the self-
interaction [ Smith Will (1980); Frolov and
Zelnikov (1980,1981); Ritus 1981, Lohiya (1982)].
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which leads to an additional repulsive (from
the black hole) self-force.
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For a scalar charge ¢q near a four-dimensional
Reissner-Nordstrom black hole the self-force
vanishes
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"D Thisis IR effect and it is quite subtle. One

has to be very delicate in dealing with the model
of a classical electron because a minute
discrepancy in calculations of the UV-divergent
classical energy of the electron in the external
gravitational field may easily overshoot the
effect itself.

Q In higher dimensions the UV-divergencies
are much stronger and have richer structure
than in four dimensions and one has to be
infinitely more accurate in describing the model.
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Knowledge of the exact higher-dimensional Green
functions is a plus for treatment of IR behavior of
fields generated by charges in curved spacetime.

O Some additional finite terms may also survive
after renormalizations of UV-divergencies.



Self-energy of a scalar charge

Minimally coupled massless scalar field o®=-4rJ
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In a static D-dimensional spacetime with the metric:
2 2 42 b
ds® =—a°dt” + g, dx"dx

This scalar field is not conformal.
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The energy E of a static configuration of fields is
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Q The energy E is a functional of (D-1)-dimensional metric 0.
‘dilaton’ field ¢y , and the scalar field @ .

This functional formally looks like the functional of
(D-1)-dimensional Euclidean action.

Q Consider continuous transformations of E described by a
function €2 (X) : n=D-3

J.. =0°q a=Q"x, p=Q""p

ab?
Q The functional E is invariant under these transformations.

The operator F transforms homogeneously

F=Q":F Q
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E As expected, the obtalne! p

energy of a pointlike charge is divergent. To deal
with this problem we shall use the point-splitting
method, similar to the regularization schemes

adopted in the quantum field theory

G(X,X) = G y(X,X)= 1@-[6()(’ x") =Gy, (%, x)]

E=-mu, " =ma(x).
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The Green function G (x, x,)\l‘g

n=D-3
FG(x,x)=-6"7(x,X)
transforms as G(x x) Q72(x) G(x,x) Q2(x)

Therefore 070 & (0 = is invariant under the transformations.
But G, (X X") does not respect this invariance and, hence,
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Divergent terms

Gy, (X, X) = A™* (%, X))
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Schwinger-DeWitt coefficients
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Van Vleck-Morette determinant
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O In 4D ( and any even dimension ) the anomaly B=0
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The anomaly B can be obtained from the%ation law
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If one knows < gp > in some reference spacetlme,
Then using this anomaly one can derive <¢° >,

in all other spacetimes related to the reference one
by transformations we have discussed.
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Higher dimensional Majumdar-Papapetrou

\metrlcs
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ds? = -U 2 dt’ +U?"s, dxdx’
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U=1+) —X, :\/5ab(x —x2) (X" = x7)

Where X, is the spatial position of the k-th
extremal black hole






One can see that the M;

Q(x) =U""(x)

connects the Majumdar-Papapetrou metric to
the Minkowski D-dimensional metric and
<¢’>,=-B because <@p’> =0

In 4D Am=0
& 2 )
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Where R is the Ricci scalar of the spatial metric 9,




The self-energy of static scalar sources of a minimally coupled massless
scalar field is invariant under special symmetry transformations. This
exact transformation law makes possible to relate the self-energy of a
charge in the physical spacetime to the self-energy in some reference
spacetime, where its calculation may be significantly simpler.

In the case of Majumdar-Papapetrou spacetimes it happens that this
symmetry relates Majumdar-Papapetrou spacetimes to the flat
Minkowski spacetime.

Regularization procedure breaks this symmetry and results in
appearance of the anomaly. We have presented an approach to study
the self-energy of pointlike charges based on calculation of the self-
energy anomaly.
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Maxwell field g
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Self-energy of charges
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The other way is to consider p;

sources

J\J=0 = 0y=0go (X) S(X* —x®) = qU *(x) 5(x* — x'?)

but use the regularized Green function
G (X, X)—> G, (X X)
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Electric charge
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Hadamard expansion for the Green function
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G(t, x;t', X) = j: ds K (s|t, x;t", X)
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The Schwinger-DeWitt expansion of
the static heat kernel
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For o(xx), a(xX) see eg., EricPoisson Living Rev.Rel.7(2004)6
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In D=4 dimensions ( in Schwarzschild coordinates)
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‘ Summary \Q

) The exact solutions for static Green functions in
the higher dimensional Majumdar-Papapetrou
metrics was found. It makes possible to treat IR
behavior of fields in this background.

D The unambiguous scheme for extracting UV
divergencies in the self-energy of static charges
was proposed.
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g (xx)= R(x, X"

RP(X,X)=(r=M)*+(r'=M)*=2(r—=M)(r'=M)cos 1 —(M?-Q?)sin* A
COoSA =cosédcosd'+sindsin@'cos(gp—¢')

om v 1 (I
G (X, X)) = rr'(RJer

[I(x,x)=(r-M)r'-M)-(M?-Q?)cos A
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The problem of description of an influence of
gravitational field on charged particles has a
long history:

J. J. Thomson (1881), Lorentz (1899,1904),
Abraham (1904 ), Poincaré (1905,1906), Fermi

(1921) .cv er wee oo,
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( higher-dimensional Schwarcshild ) metric
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This attempt unfortunately fails for n>1. Higher
dimensional Reissner-Nordstrom black hole is not
much better.
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Extremal Reissner-Nordstrom black hole
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The Green function "E
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Scalar field C(x, x'; X, x") = y (
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Or in the Schwarzchild coordinates
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