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The problem of the electromagnetic origin of the 
electron mass  has a long history. It first was 
formulated in the classical theory when in 1881 
Thompson  demonstrated that the self-energy of 
the electromagnetic field contributes to the 
inertial mass of a charged particle.  
 
This idea was then elaborated in the works by 
Lorentz [1989], Abraham [1903], Poincaré [1905], 
Fermi [1921] and others.  



For a simple model of a uniformly charged sphere 
of radius  e  the electrostatic energy is   E=e  / e . 
However it was shown by Abraham [1904-1905] the 
relation between energy and momentum for such a 
particle differs from the standard one by a factor 
4/3. This factor disappears if one includes in the 
definition of the self-energy a contribution of 
additional (non-electromagnetic) forces that are 
required to make the system stable. To solve 4/3-
problem Poincaré [1906] introduced special sort of 
non-electromagnetic pressure. 
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In quantum electrodynamics the self-energy of an electron 
diverges and, hence, should be regularized and 
renormalized. A classical self-energy of pointlike charges 
suffers similar divergences. Quantum field theory provides 
us with methods to deal with this problem systematically.  
 
Classical self-energy of an electron can be derived as the 
limit of its quantum value [Vilenkin and Fomin, Efimov] 
  
 We apply QFT methods to resolve the problems with 
ambiguities and model dependence of the classical self-
energy of charged particles. 
 
In higher dimensions these problems are much more 
serious than in four dimensions, and new features appear. 



We consider static scalar charges in the 
gravitational field of higher dimensional 
black holes. 

In this case radiation-reaction effects vanish.  
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We will show that unexpected contributions 
to the self-energy                          and self-force 
appear in odd-dimensional spacetimes.  
This effect is classical but is closely related  
to quantum conformal anomaly. 

          is the field defined on (D-1)-
dimensional spatial slice ( t=const ) 
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Formally the functional  of the self-energy                            of a 
charge distribution is invariant under transformations of the 
static metric.  
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But   E  diverges for point-like  sources. 
Regularization breaks this invariance and 
acquires  an anomalous contribution  
 
 
 
 
 
 
similar to  the conformal anomaly in QFT. 
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In some simple cases, like the charge in a 
homogeneous  gravitational field, the self-
energy can be calculated exactly and we can test 
our approach. 

 
In 4D the energy of an electric charge  in a 
homogeneous gravitational field is reduced by 
an amount proportional to its acceleration. 
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For calculations of the self-energy of static 

charges one has to know only static Green 
functions.  
Fortunately, in some interesting cases:  static 
charges near 4-dimensional Schwarcschild or 
Reissner-Nordström black holes the static Green 

functions are known exactly  
[Copson (1928), Leaute-Linet (1976); Linet 
(1976)].  



As the result one can show that electron gets 
an additional positive energy due to the self-
interaction [Smith Will (1980); Frolov and 
Zelnikov (1980,1981); Ritus 1981, Lohiya (1982)].  

which leads to an additional repulsive (from 
the black hole) self-force. 
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For a scalar charge    𝒒  near a four-dimensional 
Reissner-Nordström  black hole the self-force 
vanishes 



       This is IR effect and it is quite subtle. One 
has to be very delicate in dealing with the model 
of a classical electron because a minute 
discrepancy in calculations of the UV-divergent 
classical energy of the electron in the external 
gravitational field may easily overshoot the 
effect itself.  

       In higher dimensions the UV-divergencies 
are much stronger and have richer structure 
than in four dimensions and one has to be 
infinitely more accurate in describing the model. 



Knowledge of the exact higher-dimensional Green 
functions is a plus for treatment of IR behavior of 
fields generated by charges in curved spacetime.  
  

Some additional finite terms may also survive 
after renormalizations of UV-divergencies. 



Self-energy of a scalar charge  
in a static spacetime 

Minimally coupled massless scalar field  
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Introduce a new field variable 
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The energy  E  is a functional of (D-1)-dimensional metric           , 
`dilaton` field          ,  and the scalar field        .   abg

This functional formally looks like the functional of  
(D-1)-dimensional Euclidean action. 

Consider continuous transformations of   E  described by a 
function                  : 
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Self-energy of a scalar charge  q  
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As expected, the obtained expression for the self-
energy of a pointlike charge is divergent. To deal 
with this problem we shall use the point-splitting 
method, similar to the regularization schemes 
adopted in the quantum field theory 
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The Green function   G (x , x’) 
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In 4D ( and any even dimension )  the anomaly   B=0 

In 5D 
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The anomaly B can be obtained from the transformation law  

Where A depends  on              and                          
In 5D:  

abg 



If one knows                    in some reference spacetime, 
Then using this anomaly one can derive                         
in all other spacetimes related to the reference one 
by transformations we have discussed. 
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Higher dimensional Majumdar-Papapetrou 
metrics 
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Summary 

In the case of Majumdar-Papapetrou spacetimes  it happens that this 
symmetry relates Majumdar-Papapetrou spacetimes to the flat 
Minkowski spacetime.  
 
Regularization procedure breaks this symmetry and results in 
appearance of the anomaly. We have presented an approach to study 
the self-energy of pointlike charges based on calculation of the self-
energy anomaly. 

The self-energy of static scalar sources of a minimally coupled massless 
scalar field is invariant under special symmetry transformations. This 
exact transformation law makes possible to relate the self-energy of a 
charge in the physical spacetime to the self-energy in some reference 
spacetime, where its calculation may be significantly simpler.  
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Self-energy of charges 
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The other way is to consider point-like 
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The Schwinger–DeWitt  expansion of  
the static heat kernel  
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In D=4 dimensions  ( in Schwarzschild coordinates ) 
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Summary 
The exact solutions for static Green functions in 
the higher dimensional Majumdar-Papapetrou 
metrics was found. It makes possible to treat IR 
behavior of fields in this background. 

The unambiguous scheme for extracting UV 
divergencies in the self-energy of static charges 
was proposed. 
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The problem of description of an influence of 
gravitational field on charged particles has a 
long history:  
J. J. Thomson (1881), Lorentz (1899,1904), 
Abraham (1904), Poincaré (1905,1906), Fermi 
(1921)    … … … … 
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Let us try the Tangherlini  
( higher-dimensional Schwarcshild )  metric  
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This attempt unfortunately fails for n>1. Higher 
dimensional Reissner-Nordström black hole is not 
much better. 
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Extremal Reissner-Nordström black hole 
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The Green function 

Static Green function 
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Scalar field 
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Or in the Schwarzchild coordinates  



Maxwell field 
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