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§ IR divergence in sinagle field inflation

Setup: 4D Einstein gravity + minimally coupled scalar field

/\ Factor coming from this loop:
Q (¢(y)(y))~ [dk P(k)~log(aH /Ky, )
: 1 7‘

curvature perturbation in | Scale invariant spectrum
co-moving gauge. - no typical mass scale

{ 7y =7 epll)

5¢ ~0 Transverse
traceless




Special property of single field inflation
Yuko Urakawa and T.T., PTP122: 779 arXiv:0902.3209

+ In conventional cosmological perturbation theory,
gauge is not completely fixed.

Time slicing can be uniquely specified: 6¢p=0 OK!

but spatial coordinates are not.

hj —0= hj I Elliptic-type differential
| Y equation for &'.
Residual gauge d.o.f. > Afi _
ohy =g ; +5i )

Not unique locally!

+ To solve the equation for &', by
Imposing boundary condition at
infinity, we need information about
un-observable region.

observable

Qgiozn t|me
direction

e




Basic idea of the proof of IR finiteness in
single field inflation

¢ The local spatial average of £ can be set to O identically
by an appropriate (but non-standard) gauge choice.

+ Even if we choose such a local gauge, the evolution
equation for £ formally does not change, and it is
hyperbolic. So, the interaction vertices are localized
Inside the past light cone.

+ Therefore, IR divergence does not appear as long as we
compute ¢ in this local gauge. But here we assumed
that the initial quantum state is free from IR divergence.



Complete gauge fixing vs.
Genuine gauge-invariant quantities

+ Local gauge conditions.
Aéi _ .. Imposing boundary
conditions on the boundary
of the observable region

No influence from outside
Complete gauge fixing )
e

But unsatisfactory?
The results depend
on the choice of
boundary conditions.
Translation
Invariance Is lost.

o+ Genuine gauge-invariant quantities.
Correlation functions for 3-d scalar curvature on ¢ =constant slice.

(R(X7) R(X5)) Coordinates do not have gauge invariant meaning.

L (Giddings & Sloth 1005.1056)
X(Xa» A=1) =Xp + 6 Xa (Byrnes et al. 1005.33307)

Specify the position by solving geodesic eq. D*x'/dA? =0
origin with initial condition DX /dﬂ\ko — X

9R(X,) 1= R(X(Xn, A=1)) = R(X4) +3%, VR(X,) + ...
(IR(X)) IR(X,)) should be genuine gauge invariant.

Translation invariance of the vacuum state takes
care of the ambiguity in the choice of the origin.




Extra requirement for IR reqularity

In ¢ =0 gauge, EOM is very simple

5 5 v—— Only relevant terms in
[@t + (3 + &, ),b 0, —€ (”@)A]g ~(0 the IR limit were kept.

Non-linearity is concentrated on this term.

Formal solution in IR limit can be obtained as 2
§:§|_2§|L_1G_ZPA§|+'” gzz_dpz log s

with £-1 being the formal inverse of £=07+(3+¢,)pd, —e A

J Rz—4e_2pA[ =6 (Zfle_sz'FX'@x)é/l +]

<9 R(x,)°R(x, )>9 <§_,2><A(2[1e‘2”A+ x-0, )¢, (x)xARLe A+ x-8,)C, (%))
IR divergent factor
IR regularity may require [2L‘1e‘2PA+(X.v)] &, =0



IR regularity may require
2Lt e?A+(x-V)|¢, =0
However, L1 should be defined for each Fourier component.
L7(tx)= Id3k " L1 () for arbitrary function f (t,x)
with £, =02 +(3+s,)p 0, +e 27k’

Then, 2L A¢, +(x-V), =0 is impossible,
Because for ¢, = [ d3k (e v, (t) a, + h.c.),
L7 A, ce™a, while (x-V)<, cik-xe**a,



Instead, one can impose
2rte?a+(x-V), = Id *(a, D&V, (t)+hc.)

with Dk _ k—3/2e—i¢(k) d k3/2ei¢(k)
; d log k ;

which reduces to conditions on the mode functions.
—2k* L, '€V, =Dy,

-extension to the higher order:
{(2£1e2pA)2 +%(2+ x.v)x.v}/; = _[ d°k(a, D2e™v, (t)+h.c.)
With this choice, IR divergence disappears.

(ROGPROG) ™ o (07) [ alag o e )

IR divergent factor total derivative




Physical meaning of IR regularity condition

In addition to considering R, we need additional conditions
— 2k2£;1e‘2pvk = D,V, and its higher order extension.

What is the physical meaning of these conditions?

~

Background gauge: X =e°x ¢£(X)=<(x)
ds? = —dt? + e??dx? ==) ds* = —dt® + e?***dXx?
H=H,[¢]+Hy[¢] =D A =H,||+H,|Z 5|

*Quadratic part in Zand s is identical to s = 0 case.
*Interaction Hamiltonian is obtained just by replacing
the argument £ with £ —s.

Therefore, one can use _
1) common mode functions for £, and ¢,

& =] d3k (ekxv,(t) a, + h.c)mm=) & =] d3k (ekv,(t) & + h.c.)
2) common iteration scheme.

§:§|+5§[ I] |:> 5=é:|+5é/[5|—5]




We may require
(04 ) (%, )-++¢ (%,)0) = (0l ()& (%, )-+-£ (%, JO)
dentification¢’(x)= ¢ (X) under the assumption &, =4,

=) [2£%”A+(x-V)|¢, =0

a ~3 condition incompatible with Fourier decomposition
k ™ Y%k
> —-2k’Le v, =Dy,
condition compatible with Fourier decomposition

Retarded integral with {(7,)=¢,(77,) guarantees the commutation relation of &
|:> DV, (770)=0 : incompatible with the normalization condition.

It looks quite non-trivial to find consistent IR regular states.

However, the Euclidean vacuum state (7, » =i « ) satisfies
this condition. (Proof will be given in our new paper)



Summary

We obtained the conditions for the absence of IR
divergences.

Euclidean vacuum and its excited states satisfy
the IR regular condition.

It requires further investigation whether there are
other (non-trivial and natural) quantum states
compatible with the IR regularity.



Tree level 2-point function

¢ 2-point function of the usual curvature perturbation
Is divergent even at the tree level.

(& (%) SXP= (& (Xy) £hX)y@=Td(logk)k3 [y (Xy) U (Xp)] +c.c.
where ( =u,a, +u’, af,
u, =k=32(1-ik/aH)eWaH for Bunch Davies vacuum
fd(logk)k3[ u (X)) u”, (X,) Joc [d(logk)  Logarithmically divergent!

o Of course, artificial IR cutoff removes IR divergence
Jd(log K)k3[ u (X)) u* (X,) ] [d(logk)P,,  but very artificial!

¢ Why there remains IR divergence even in BD vacuum?
¢ is not gauge invariant, but 9R(X) =R(X) is.
(FR(X,) FR(X,)® = Jd(logk)k* [ Auy(Xy) Au™y (X,) | o= [d(logk) k¢

Local gauge-invariant quantities do not diverge for the
Bunch-Davies vacuum state.



One-loop 2-point function at leading slow-roll exp.

+ No interaction term in the evolution
equation at O(&Y) in flat gauge.
©flat gauge — synchronous gauge ©OR(X,) ~e?Al  ©OR — R
(IR(X1) IR(Xp)) M= (IRO(X1) IRM(X,)) + (JRP(X;) IRD(X,)) + (IRM(X;) IREI(Xy))
33(£;?) Jd(logk)k®[ A(D2U (X)) AU, (X,)) + 2A(DU,(X,))A(DUy (X,))

+HAUX))ADU" (Xp)] + c.c.
+ (manifestly finite pieces)

G=Ua+tuyaf & D:= Ojoga — (X - V)

+ IR divergence from (%), in general.

where

r— However, the integral vanishes for the Bunch-Davies vacuum state. =
" U =k7*(1-ik/aH)e™"  mmmp  Duy, =k—32 9,y (k32U,)

== (PR(X;) IR(X,)) Do (& 2xd(l0gk) Oy, [AK2U, (X))AKY2U" (X)) 1+ C.C.
\_ Y,

¢ Toremove IR divergence, the positive frequency function corresponding
to the vacuum state is required to satisfy Du, =k='2 9,y (k*?uy) .

IR regularity requests scale invariance!




One-loop 2-point function at the next leading
order of slow-roll. (YU and TT, /n preparation)

N H 6 2H
R2~C|A|:(1 H2j6Ioga+H¢ H2 Xai:|§l

At the lowest order in & Duy = (554 —X'0;) U= k™32 0o (K¥2U,) Was requested.

Some extension of this relation to O(¢) is necessary.
Natural extension is

H p  2H .

Kl—]@loga ¢ _ ~—X'0; [u, =k7%0,,, k> *u, Notice that

H* Hp H° — U, oc eikx
should have the same coefficient Kk

™ f(k/aH)

(Ui, Uy )= 5(k —K) » Uy =

EOM for f: (

; k2 ¢ 2H . -
Otogart +30pogant + 55— —=—— | |f =0 consistent with the
a’H Hg¢ H above requirement !!

(*R(X,R(X, )>( o (¢7)x [ d(log k)[a,ogﬁ[@ 2Hja,ong

H2

<[, (X )JA2u (X))

IR divergence can be removed by an appropriate choice of the initial
vacuum even if we consider the next leading order of slow roll.



