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What Is Superradiance?

Robert Dicke R &)
i
LA

“Coherence in spontaneous emission processes” ‘
Phys. Rev. 93, 99 (1954)

One photon with energy faw is stored in the system

Single atom spontaneously N atoms can decay N-times faster
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Simple example of superradiance
Radiation of N classical harmonic oscillators

N oscillators R << A
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Assume that oscillators move with equal amplitude A
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Virtual transitions

Atom can jump into an excited state and virtual
photon is emitted, then atom quickly jumps back E e

to the ground state and absorbs a photon. "

Virtual processes have real effects — they shift
energy levels of emitting atoms (Lamb shift).

Hydrogen atom

1947: Experiment by Willis Lamb 1058 MHz
and Robert Retherford
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In 1955 W. Lamb won the Nobel Prize in Physics
"for his discoveries concerning the fine structure of
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the hydrogen spectrum” =



What if there are N atoms?

How virtual photons modify system evolution?



What about retardation (nonlocal) effects?
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for wave to travel from atom A to atom B

It takes time t = -



System: N two-level atoms, randomly distributed in a sample
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One atom is excited, but we don't know which one
Atoms interact only by photon exchange

Interaction Hamiltonian
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Gj - atom operator, ék - photon operator, gk - atom-photon coupling constant
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Ground state
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Emission of real photon with frequency

States of N atoms
A

State vector

N(N-1)72 Two atoms excited

One atom excited

B

N

Initial condition:

N
W= Bi(1)Ibib,...a;...b 0>+ v (t) [bjb,...b L > +...
=1 k

¥ (0)=0, B;(0)

B; (t) - probability amplitude to find atom ] excited at time t

State has zero dipole moment



For dense atomic cloud state evolution is described by:
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Includes retardation effects and ko —
virtual photon contribution

Local approximation op(t,r) . N .. exp(iky,|r—r') .
= —_— dr' 0 t,rl
(slow decay): Y J k [F—F] pT)

Omitting virtual photons: op(L.T) =—yﬂj‘df' Si”k(kIOJFiT'D
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Y - Spontaneous decay rate of single atom
[ (t,T) - probability amplitude to find atom at I excited at time t



Effect of virtual transitions



Evolution of eigenstates is given by

pt,T)=p(F)e "

Re[A,] - gives collective decay rate

Im[A.] -frequency shift (Lamb shift)

Sum rule;
N

> A, =Ny
n=1

If there are states which decay faster than single atom decay rate y
then inevitably there are states which decay more slowly.



Eigenstates of spherical atomic system

Exp kernel:

Bnm(_f) — jn (akor)Ynm(91 (P)

Eigenvalues are determined from
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Sin kernel:

Bnm(_f) — jn (kor)Ynm(e’ (P)
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(Ernst 1969)

Y. - spherical harmonics, j,(z), h,*)(z) — spherical Bessel functions




Small sample limit R<<A (kR <<1)
Fastest decaying eigenstate for spherical sample

pt,T)=p(F)e "

Sin kernel: Exp kernel:
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Large sample limit k,R>>1 (R>>2)
Distribution of eigenstate decay rates for R =104, N =10*
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Effect of virtual photons on evolution of N atoms

Probability P(t) that atoms are excited

Large cloud
R>>A
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Including virtual photons
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Virtual processes transform population into slowly decaying states



Effect of virtual photons on evolution of N atoms

Uniform excitation  Probability P(t) that atoms are excited

R>>A P(t)1 O _____ e
U No virtual photons
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Virtual photons result in slow decay of trapped states



Non-local (retardation) effects
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Slab geometry: exact solution

In nonlocal regime S
>
" " > 0
Initial condition: X
. ) g R
B(0,F)=e"" o =" -
>
R >> A

State evolution is described by:
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Exact solution for any slab thickness:

: 0 ([ [ct—z" (20
B(t,z) = e | cos(Qt) + O(ct — Z)?J o JA (T\/Z’(Ct — z’)) dz'

Q:y\/%nﬂzg — collective Rabi frequency
Ty

n — atomic density

Local approximation:

B(t,F)= JO(Z—Qﬁje‘koz
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Crossover between local and nonlocal dynamics occurs at

C
RO :5
R << |- Local regime
Q
R >>— |- Nonlocal regime R
Q [—

For|y=10"s™", 1=0.5um, n=10"cm™

Collective Rabi frequency | o=y /4in/123 =4.2x10"s™
Ty
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Characteristic slab thickness: |Ro = e 0.7mm




Probability P(t) that atoms are excited
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Local approximation
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Probability P(t) that atoms are excited
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Probability P(t) that atoms are excited
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Shape of the emitted pulse
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Summary

Superradiance of atomic ensembles is a fascinating
phenomenon which still offers interesting directions of
exploration.

Influence of virtual transitions on collective emission and
nonlocal effects are among intriguing subjects of future
theoretical and experimental investigation.
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