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Generalized superstatistics

3 a new approach to the study of complex nonequilibrium systems (Sob’yanin
2011)3 a generalization of superstatistics

Nonequilibrium systems

3 Exhibit spatiotemporally inhomogeneous dynamics.3 Often characterized by hierarchical structures of dynamics.3 The hierarchy is formed by the decomposition of the system dynamics into
different dynamics on different spatiotemporal scales.3 The statistical properties of the system can be effectively described by a su-
perposition of several statistics.



Superstatistics

3 Formulated to consider nonequilibrium systems with a stationary state and
intensive parameter fluctuations (Beck & Cohen 2003).3 Superstatistical systems are characterized by the existence of an intensive pa-
rameter β.3 An essential feature is sufficient time scale separation between two relevant
dynamics within the complex system.3 β fluctuates on a much larger time scale than the typical relaxation time of
the local dynamics.3 A superstatistical system can be thought of as a collection of many small
spatial cells, each having the Gibbs canonical distribution determined by β.3 β is often the inverse temperature in a cell, but other interpretations are pos-
sible.



Superstatistical system

3 can be associated with a hyperensemble (Abe 2009)



Hyperensemble

3 an ensemble of ensembles (Crooks 2007)



Applications of superstatistics

3 Astrophysical

⋄ cosmic-ray energy spectra and electron-positron pair annihilation (Beck
2004, 2009)

⋄ solar flares (Baiesi, Paczuski, & Stella 2006)3 and many others

⋄ random matrix theory (Abul-Magd 2006)

⋄ multiplicative noise (Duarte Queirós 2008)

⋄ Feynman propagators (Jizba & Kleinert 2010)

⋄ nonequilibrium Markovian systems (Lubashevsky et al. 2009)

⋄ system lifetime distributions (Ryazanov 2009)

⋄ a mesoscopic approach to Brownian motion (Rodriguez & Santamaria-
Holek 2007)



Applications of superstatistics

⋄ cancerous systems (Leon Chen & Beck 2008)

⋄ complex networks (Abe & Thurner 2005)

⋄ train departure delays (Briggs & Beck 2007)

⋄ hydroclimatic fluctuations (Porporato, Vico, & Fay 2006)

⋄ wind velocity fluctuations (Rizzo & Rapisarda 2004)

⋄ share price fluctuations (Anteneodo & Duarte Queirós 2009; Van der
Straeten & Beck 2009)

⋄ hydrodynamic turbulence (Reynolds 2003; Jung & Swinney 2005; Beck,
Cohen, & Swinney 2005; Beck 2007; Van der Straeten & Beck 2009; Abe
2010)

⋄ etc.



Generalized superstatistics

3 represents a “statistics of superstatistics”3 based on the concept of fluctuating control parameters3 can be used for nonstationary nonequilibrium systems

Generalized superstatistical system

3 comprises a set of nonequilibrium superstatistical subsystems3 has three levels of dynamics:

⋄ fast local dynamics in a cell

⋄ superstatistical dynamics in a subsystem

⋄ global dynamics in the whole system3 can be associated with a generalized hyperensemble, an ensemble of hyper-
ensembles



Generalized superstatistics

3 There exists a fluctuating vector control parameter ξ on which both the inten-
sive parameter distribution and the density of energy states depend.3 ξ determines the density of energy states for the subsystem,

g(E|ξ) = ∂Γ(E|ξ)
∂E

,

where Γ(E|ξ) is the number of states with energy less than E.3 The Gibbs canonical distribution for each cell of the subsystem is

ρG(E|β, ξ) = e−βE

Z(β|ξ)
,

where

Z(β|ξ) =
∫

e−βEdΓ(E|ξ)

is the partition function.



Generalized superstatistical distribution

3 ξ also determines the distribution f(β|ξ) of the intensive parameter β.3 The superstatistical distribution for each subsystem is given by

ρ(E|ξ) =
∫

ρG(E|β, ξ)f(β|ξ)dβ,

with the normalization condition
∫
ρ(E|ξ)dΓ(E|ξ) = 1.3 The generalized superstatistical distribution has the form

σ(E) =

∫
ρ(E|ξ)g(E|ξ)c(ξ)dξ,

with the normalization condition
∫
σ(E)dE = 1.



An example: branching processes

3 Consider a many-particle system composed of particles of n types. Each type-
i particle (Ti) has a random lifetime with a probability distribution function
Gi(τ).3 At the end of its life the particle decays into a random number of particles of
several types.3 Specifically, at the moment of its decay the particle produces ωj > 0 type-j
particles of age zero, 1 6 j 6 n:

Ti →
n∑

j=1

ωjTj.

3 We have a multitype age-dependent branching process, the so-called multitype
Sevast’yanov process (Sevast’yanov 1964).



Physical assumptions

3 The mean number of type-j particles that appear upon the decay of a type-i
particle is given by an n×n matrix A = ∥Aij∥ with components 0 6 Aij < ∞.3 A is irreducible, or indecomposable, i.e., the index set {1, . . . , n} cannot be
divided into two disjoint nonempty sets S1 and S2 such that Aij = 0 for all
i ∈ S1 and all j ∈ S2.3 The Perron root of A, i.e., the maximum positive real eigenvalue of A, is
greater than one.3 We deal with the indecomposable supercritical multitype age-dependent branch-
ing process.3 Physically, this means that

⋄ a particle of a given type potentially has descendants, either direct or
distant, of any type and

⋄ the number of particles in the system, on average, progressively increases.



Long-run properties

3 The mean number of particles of any type at time t is

∝ eαt, t → ∞.

3 The limiting probability πi that a given particle is of type i is independent of
the type of the primary particle.3 Nonstationary though the situation is, the limiting probability is stationary.3 The limiting age distribution for type-i particles is (Sob’yanin 2011)

Li(τ) =

∫ τ

0
e−αu[1−Gi(u)]du∫∞

0
e−αu[1−Gi(u)]du

.

3 The energy of a type-i particle of age τ can be considered as a random variable
characterized by a conditional probability density wi(E|τ).3 The energy probability density for type-i particles becomes

ρi(E) =

∫ ∞

0

wi(E|τ)dLi(τ).



Branching processes and generalized superstatistics

3 The described system can be considered as a generalized superstatistical sys-
tem.3 The whole system is composed of n subsystems, the ith subsystem comprising
type-i particles.3 The subsystems interact with each other in the sense that the decay of a
particle in one subsystem leads to the creation of particles in other subsystems.3 The number of particles both in the whole system and in each subsystem
increases exponentially.3 We have a nonstationary nonequilibrium situation.



Intensive parameter and control parameter distributions

3 The control parameter ξ is a discrete random variable that yields the number
of the subsystem to which a randomly chosen particle belongs.3 ξ has the discrete probability distribution {π1, . . . , πn} and corresponds to the
particle type.3 The distribution of the intensive parameter β for the ith subsystem is

fi(β) = Zi(β)L
−1[ρi(E)](β),

where L−1[g(s)](x) is the inverse Laplace transform of a function g(s) and
Zi(β) is the partition function.



(Lyne et al. 2009)

An astrophysical example:
pair production in a neutron star magnetosphere

3 New nonstationary cosmic radio sources associated with neutron stars:

⋄ intermittent pulsars (Kramer et al. 2006)

⋄ rotating radio transients (RRATs) (McLaughlin et al. 2006)3 Characteristic properties:

⋄ long “silence”

⋄ nonstationarity of radio emission3 An example: RRAT J1819–1458

⋄ period ≈ 4.263 s

⋄ burst rate ∼ 20− 30 h−1

⋄ burst width ∼ 3 ms



Rotating radio transients (RRATs)

3 Manifest themselves as separate, sparse, short, relatively bright radio bursts.3 The typical burst rate is from the range 1 min−1–1 h−1.3 The intensity of single radio bursts

⋄ reaches 310 mJy at 111 MHz (Shitov et al. 2009);

⋄ lies within the range of 100 mJy to 10 Jy at 1.4 GHz (Keane et al. 2010).3 The phase of bursts is approximately retained.3 The underlying periodicity lies within the range 0.1–6.7 s (Keane et al. 2010).3 For RRAT J1819–1458, the surface magnetic field reaches 5×1013 G (McLaugh-
lin et al. 2006; Esamdin et al. 2008) and exceeds the critical one.3 The nature of RRATs can be explained by the formation of “lightnings” in
their magnetospheres (Istomin & Sob’yanin 2011c).



Nonstationary pair production

3 An electron-positron plasma outflowing from the magnetosphere of a neutron
star is responsible for the observable radio emission.3 The plasma generation can be switched off for some time.3 The absorption of a high-energy photon in the inner neutron star magneto-
sphere triggers nonstationary cascade pair production (Istomin & Sob’yanin
2011a).3 This results in the formation of a “lightning” (Istomin & Sob’yanin 2011b).3 The plasma generation, along with the accompanying radio emission, is not
suppressed even in ultrahigh magnetar magnetic fields (Istomin & Sob’yanin
2007, 2008).3 The properties of the emission from electrons and positrons are determined by
their energies.3 It is important to find the energy distribution of particles.



Acceleration of particles

3 The energy of a charged particle is characterized by its Lorentz factor γ(τ).3 The particle is efficiently accelerated by a longitudinal electric field E∥.3 γ(τ) eventually reaches a stationary value γ0, which is ∼ 108 in a vacuum
neutron star magnetosphere (Istomin & Sob’yanin 2009).3 At the initial stage of acceleration γ(τ) increases linearly with time,

γ(τ) ≈ E∥τ.

3 When t approaches
τ0 = γ0/E∥,

the radiation forces come to the fore.3 A need arises to use the Dirac-Lorentz equation to consider the particle dy-
namics properly (Istomin & Sob’yanin 2009, 2010a, 2010b).



Two types of particles

3 A type-1 particle

⋄ can be efficiently accelerated by the electric field since the radiation fric-
tion is negligible

⋄ does not efficiently produce secondary pairs3 A type-2 particle

⋄ is not accelerated by the electric field because of the electrodynamic self-
action effects

⋄ has the constant Lorentz factor γ0

⋄ produces secondary pairs at a rate Q (Istomin & Sob’yanin 2011a)3 The particles of each produced pair, though moving independently of each
other, can conveniently be considered as a whole.3 Type-1 and type-2 pairs are defined by analogy with individual particles.



Pair production and branching processes

3 The Lorentz factors of type-1 and type-2 particles as functions of their ages
become

γ1(τ) = E∥τ, 0 6 τ < τ0,

γ2(τ) = γ0, 0 6 τ < ∞.

3 The transformations of electron-positron pairs are

T1 → T2,

T2 → T1 + T2.

3 The lifetime distribution functions are

G1(τ) = θ(τ − τ0),

G2(τ) = 1− e−2Qτ ,

where θ(x) is the Heaviside function.



Pair production rate

3 The mean matrix A =
(
0 1
1 1

)
indicates that the branching process is supercrit-

ical and indecomposable.3 Pair production in the system under consideration is asymptotically described
by the equation (Istomin & Sob’yanin 2011a)

dN(t)

dt
= 2QeffN(t),

where N(t) is the number of electron-
positron pairs at time t, Qeff = N eff

τ0
/2τ0

is the effective pair production rate,
and N eff

τ0
satisfies

N eff
τ0

= lnNτ0 − lnN eff
τ0
,

with Nτ0 = 2Qτ0.3 The Malthusian parameter is

α = 2Qeff .



Pair production and generalized superstatistics

3 The system can be considered as a generalized superstatistical system.3 It consists of two superstatistical subsystems, the first comprising type-1 par-
ticles and the second comprising type-2 particles.3 The density of states for the subsystems is

g1(γ) = 1− θ(γ − γ0),

g2(γ) = δ(γ − γ0),

where δ(x) is the delta function.3 The corresponding intensive parameter distributions are

f1(β) = δ
(
β − α

E∥

)
,

f2(β) = δ(β).



Pair production and generalized superstatistics

3 The control parameter ξ corresponds to the type of a randomly chosen particle.3 The probability πξ that a randomly chosen particle is of type ξ is

π1 = 1− α

2Q
,

π2 =
α

2Q
.

3 π2 may be interpreted as the probability that the particle significantly con-
tributes to pair production.3 The generalized superstatistical distribution

σ(γ) =
α

2Q
δ(γ − γ0) + [1− θ(γ − γ0)]

α

E∥
e−αγ/E∥

represents the energy distribution of ultrarelativistic electrons and positrons.



Summary

3 Generalized superstatistics has been proposed, which is a statistics of super-
statistics.3 It appears in the case of fluctuating control parameters and can be considered
in the framework of generalized hyperensembles.3 The system with branching processes is an example of a nonstationary gener-
alized superstatistical system.3 For nonstationary pair production in a neutron star magnetosphere, this ap-
proach allows one to obtain

⋄ the energy distribution of ultrarelativistic electrons and positrons and

⋄ the probability that a randomly chosen particle significantly contributes
to the production of secondary electron-positron pairs.


