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Generalized superstatistics

o a new approach to the study of complex nonequilibrium systems (Sob’yanin
2011)

c a generalization of superstatistics

Nonequilibrium systems

o Exhibit spatiotemporally inhomogeneous dynamics.
o Often characterized by hierarchical structures of dynamics.

o The hierarchy is formed by the decomposition of the system dynamics into
different dynamics on different spatiotemporal scales.

o The statistical properties of the system can be effectively described by a su-
perposition of several statistics.



Superstatistics

Formulated to consider nonequilibrium systems with a stationary state and
intensive parameter fluctuations (Beck & Cohen 2003).

Superstatistical systems are characterized by the existence of an intensive pa-
rameter .

An essential feature is sufficient time scale separation between two relevant
dynamics within the complex system.

[ fluctuates on a much larger time scale than the typical relaxation time of
the local dynamics.

A superstatistical system can be thought of as a collection of many small
spatial cells, each having the Gibbs canonical distribution determined by /.

[ is often the inverse temperature in a cell, but other interpretations are pos-
sible.



Superstatistical system

o can be associated with a hyperensemble (Abe 2009)
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Hyperensemble

o an ensemble of ensembles (Crooks 2007)
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Applications of superstatistics

o Astrophysical

© cosmic-ray energy spectra and electron-positron pair annihilation (Beck
2004, 2009)

o solar flares (Baiesi, Paczuski, & Stella 2006)

o and many others
o random matrix theory (Abul-Magd 2006)
o multiplicative noise (Duarte Queirds 2008)
o Feynman propagators (Jizba & Kleinert 2010)
o nonequilibrium Markovian systems (Lubashevsky et al. 2009)
o system lifetime distributions (Ryazanov 2009)

© a mesoscopic approach to Brownian motion (Rodriguez & Santamaria-

Holek 2007)



Applications of superstatistics

cancerous systems (Leon Chen & Beck 2008)

complex networks (Abe & Thurner 2005)

train departure delays (Briggs & Beck 2007)
hydroclimatic fluctuations (Porporato, Vico, & Fay 2006)
wind velocity fluctuations (Rizzo & Rapisarda 2004)

share price fluctuations (Anteneodo & Duarte Queirds 2009; Van der
Straeten & Beck 2009)

hydrodynamic turbulence (Reynolds 2003; Jung & Swinney 2005; Beck,
Cohen, & Swinney 2005; Beck 2007; Van der Straeten & Beck 2009; Abe
2010)

etc.



Generalized superstatistics

o represents a “statistics of superstatistics”

c based on the concept of fluctuating control parameters

o can be used for nonstationary nonequilibrium systems

Generalized superstatistical system

o comprises a set of nonequilibrium superstatistical subsystems

o has three levels of dynamics:

o fast local dynamics in a cell
o superstatistical dynamics in a subsystem

o global dynamics in the whole system

can be associated with a generalized hyperensemble, an ensemble of hyper-
ensembles



Generalized superstatistics

o There exists a fluctuating vector control parameter £ on which both the inten-
sive parameter distribution and the density of energy states depend.

o & determines the density of energy states for the subsystem,

oL (E(S)

where I'(E[€) is the number of states with energy less than FE.
o The Gibbs canonical distribution for each cell of the subsystem is
e PE

Z(BIE)’
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where
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is the partition function.



Generalized superstatistical distribution

o ¢ also determines the distribution f(5|¢) of the intensive parameter f.

o The superstatistical distribution for each subsystem is given by

p(El€) = / pe(E18,€)(BIE)dB,

with the normalization condition [ p(E|€)dI'(E|§) = 1.

o The generalized superstatistical distribution has the form
o(B) = [ p(EIgEIe)e(c

with the normalization condition [ o(E)dE = 1.



An example: branching processes

Consider a many-particle system composed of particles of n types. Each type-
i particle (T;) has a random lifetime with a probability distribution function

GZ(T)

At the end of its life the particle decays into a random number of particles of
several types.

Specifically, at the moment of its decay the particle produces w; > 0 type-j
particles of age zero, 1 < j < n:

T, — zn: ijj.
j=1

We have a multitype age-dependent branching process, the so-called multitype
Sevast’yanov process (Sevast’yanov 1964).



Physical assumptions

The mean number of type-j particles that appear upon the decay of a type-i
particle is given by an n x n matrix A = || 4;;|| with components 0 < A4;; < .

A is irreducible, or indecomposable, i.e., the index set {1,...,n} cannot be
divided into two disjoint nonempty sets S; and S, such that A;; = 0 for all
1€ Sl and all] S SQ.

The Perron root of A, i.e., the maximum positive real eigenvalue of A, is
greater than one.

We deal with the indecomposable supercritical multitype age-dependent branch-
ing process.

Physically, this means that

o a particle of a given type potentially has descendants, either direct or
distant, of any type and

< the number of particles in the system, on average, progressively increases.



Long-run properties

The mean number of particles of any type at time ¢ is

ox e, t — oo.

The limiting probability m; that a given particle is of type i is independent of
the type of the primary particle.

c Nonstationary though the situation is, the limiting probability is stationary.

o The limiting age distribution for type-i particles is (Sob’yanin 2011)

Jo e 1 — Gi(u)]du

IS e[l = Gi(u)]du

LZ(T) =

The energy of a type-i particle of age 7 can be considered as a random variable
characterized by a conditional probability density w;(E|T).

The energy probability density for type-i particles becomes

w(E) = [ wBlmaLio).



Branching processes and generalized superstatistics

The described system can be considered as a generalized superstatistical sys-
tem.

The whole system is composed of n subsystems, the ¢th subsystem comprising
type-i particles.

The subsystems interact with each other in the sense that the decay of a
particle in one subsystem leads to the creation of particles in other subsystems.

The number of particles both in the whole system and in each subsystem
increases exponentially.

We have a nonstationary nonequilibrium situation.



Intensive parameter and control parameter distributions

o The control parameter £ is a discrete random variable that yields the number
of the subsystem to which a randomly chosen particle belongs.

o ¢ has the discrete probability distribution {ry,...,7,} and corresponds to the
particle type.

o The distribution of the intensive parameter § for the ith subsystem is

fi(B) = Zi(B)L p(E)](B),

where £7!g(s)](z) is the inverse Laplace transform of a function g(s) and
Z;(B) is the partition function.



An astrophysical example:
pair production in a neutron star magnetosphere

o New nonstationary cosmic radio sources associated with neutron stars:
o intermittent pulsars (Kramer et al. 2006)
o rotating radio transients (RRATSs) (McLaughlin et al. 2006)

o Characteristic properties:
o long “silence”

© nonstationarity of radio emission (Lyne et al. 2009)

o An example: RRAT J1819-1458 ' ' . ‘
o period ~ 4.263 s
o burst rate ~ 20 —30 h™*

¢ burst width ~ 3 ms

Pulse Energy (Jy.ms)

Residual (ms)



Rotating radio transients (RRATS)

o Manifest themselves as separate, sparse, short, relatively bright radio bursts.

o The typical burst rate is from the range 1 min~*-1 h™*.

o The intensity of single radio bursts

o reaches 310 mJy at 111 MHz (Shitov et al. 2009);
o lies within the range of 100 mJy to 10 Jy at 1.4 GHz (Keane et al. 2010).

o The phase of bursts is approximately retained.

o The underlying periodicity lies within the range 0.1-6.7 s (Keane et al. 2010).
o For RRAT J1819-1458, the surface magnetic field reaches 5x10'3 G (McLaugh-

lin et al. 2006; Esamdin et al. 2008) and exceeds the critical one.

The nature of RRATSs can be explained by the formation of “lightnings” in
their magnetospheres (Istomin & Sob’yanin 2011c).



Nonstationary pair production

An electron-positron plasma outflowing from the magnetosphere of a neutron
star is responsible for the observable radio emission.

o The plasma generation can be switched off for some time.

o The absorption of a high-energy photon in the inner neutron star magneto-

sphere triggers nonstationary cascade pair production (Istomin & Sob’yanin
2011a).

o This results in the formation of a “lightning” (Istomin & Sob’yanin 2011b).

o The plasma generation, along with the accompanying radio emission, is not

suppressed even in ultrahigh magnetar magnetic fields (Istomin & Sob’yanin
2007, 2008).

The properties of the emission from electrons and positrons are determined by
their energies.

It is important to find the energy distribution of particles.



Acceleration of particles

o The energy of a charged particle is characterized by its Lorentz factor (7).

o The particle is efficiently accelerated by a longitudinal electric field E).

o ~(7) eventually reaches a stationary value vy, which is ~10% in a vacuum

neutron star magnetosphere (Istomin & Sob’yanin 2009).

At the initial stage of acceleration v(7) increases linearly with time,
(1) = Eyr.

When t approaches
To = 70/ E||7

the radiation forces come to the fore.

A need arises to use the Dirac-Lorentz equation to consider the particle dy-
namics properly (Istomin & Sob’yanin 2009, 2010a, 2010b).



(>

Two types of particles

A type-1 particle

o can be efficiently accelerated by the electric field since the radiation fric-
tion is negligible

o does not efficiently produce secondary pairs
A type-2 particle

© is not accelerated by the electric field because of the electrodynamic self-
action effects

¢ has the constant Lorentz factor vy

o produces secondary pairs at a rate @ (Istomin & Sob’yanin 2011a)

The particles of each produced pair, though moving independently of each
other, can conveniently be considered as a whole.

Type-1 and type-2 pairs are defined by analogy with individual particles.



Pair production and branching processes

o The Lorentz factors of type-1 and type-2 particles as functions of their ages
become

< 70,

c The transformations of electron-positron pairs are

Tl — Tg,
T — Ti+ 1.

o The lifetime distribution functions are

Gi(r) = 0(1t —70),
GQ(T) = 1—672@7,

where 0(x) is the Heaviside function.



Pair production rate

& The mean matrix A = ({}) indicates that the branching process is supercrit-
ical and indecomposable.

o Pair production in the system under consideration is asymptotically described
by the equation (Istomin & Sob’yanin 2011a)

AN (t)

— =2Q""N(t
(0]
NZP — Ny
where N (t) is the number of electron- e
positron pairs at time ¢, Q°f = fo /210 06 F ‘ . ,
is the effective pair production rate,
and fo satisfies 04|
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Pair production and generalized superstatistics

o The system can be considered as a generalized superstatistical system.

o It consists of two superstatistical subsystems, the first comprising type-1 par-
ticles and the second comprising type-2 particles.

c The density of states for the subsystems is
9(v) = 1-0(v—),
92(7) = (v — ),
where d(x) is the delta function.

o The corresponding intensive parameter distributions are

1 = o(s- ).

f(B) = 4(B).



Pair production and generalized superstatistics

o The control parameter £ corresponds to the type of a randomly chosen particle.
o The probability 7 that a randomly chosen particle is of type & is

«

@7

™ = 1 —

@

2Q°

o my may be interpreted as the probability that the particle significantly con-
tributes to pair production.

U

o The generalized superstatistical distribution

o(y) = Q 0(y =) +[1 —9(7—%)]%”6_‘”/’5

represents the energy distribution of ultrarelativistic electrons and positrons.



Summary

Generalized superstatistics has been proposed, which is a statistics of super-
statistics.

It appears in the case of fluctuating control parameters and can be considered
in the framework of generalized hyperensembles.

The system with branching processes is an example of a nonstationary gener-
alized superstatistical system.

For nonstationary pair production in a neutron star magnetosphere, this ap-
proach allows one to obtain

o the energy distribution of ultrarelativistic electrons and positrons and

¢ the probability that a randomly chosen particle significantly contributes
to the production of secondary electron-positron pairs.



