WITTEN INDEX OF SUPERSYMMETRIC 3D THEORIES REVISITED

Ginzburg conference, Moscow, May 28, 2012

based on

JHEP 1001:086(2010) [arXiv:0910.0803];

JHEP 1205:103(2012) [arXiv:1202.6566]

MOTIVATION

- Widely known : Maldacena duality $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \text{ 4d SYM}$
- New duality (Bagger + Lambert, 07; Aharony + Bergman + Jafferis + Maldacena, 08)

$$AdS_4 \times S^7$$
 or $AdS_4 \times CP^3 \leftrightarrow \mathcal{N} = 8$ or $\mathcal{N} = 6$ 3d SCS

DYNAMICS?

THE SIMPLEST VARIANT

$$N = 1 \text{ 3d SYM} + CS$$

$$S = \frac{1}{g^2} \operatorname{Tr} \int d^3x \left\{ -\frac{1}{2} F_{\mu\nu}^2 + i \bar{\lambda} \not D \lambda \right\} +$$

$$\kappa \operatorname{Tr} \int d^3x \left\{ \epsilon^{\mu\nu\rho} \left(A_{\mu} \partial_{\nu} A_{\rho} - \frac{2i}{3} A_{\mu} A_{\nu} A_{\rho} \right) - \bar{\lambda} \lambda \right\}$$

 $\lambda_{1,2}$ - Majorana fermion.

- A chiral gauge theory.
- mass scale $m = \kappa g^2$.
- Gauge invariance dictates for $k = 4\pi\kappa$ to be integer (the level).

Vacuum dynamics?

Witten index

$$I_W = \text{Tr}\left\{ (-1)^F e^{-\beta H} \right\} = ?$$

The result

(Witten, 99)

$$I(k,N) = (\operatorname{sgn}(k))^{N-1} \begin{pmatrix} |k| + N/2 - 1 \\ N - 1 \end{pmatrix}$$

- for SU(N) group if $|k| \ge N/2$.
- I(k, N) = 0 if |k| < N/2.
- Spontaneous SUSY breaking at |k| < N/2.

Witten's derivation

- ullet Consider the theory in a LARGE spatial box, $g^2L\gg 1$
- Integrate mentally over fermions. k is renormalized. For positive k,

$$k \to k - \frac{N}{2}$$
.

- The coupling g^2 is also renormalized. New higher derivative terms appear. Irrelevant at large volume!
- We obtain a pure CS theory with renormalized coupling.
 - Topological theory, a finite number of states.

Clever people can calculate the # of states in pure CS using the correspondence

pure CS \leftrightarrow 2d WZNW \leftrightarrow 2d conformal theories

- Number of states on the left equals number of conformal blocks on the right.
 - This gives (k > 0)

$$\#_{CS} = \left(\begin{array}{c} N+k-1\\ N-1 \end{array}\right) .$$

canonical quantization

(Elitzur + Moore + Schwimmer + Seiberg, 89; Labastida + Ramallo, 89)

pure CS Lagrangian

$$\mathcal{L}_{CS} = -\kappa \epsilon_{jk} \left[\text{Tr} \{ A_j \dot{A}_k \} + \text{Tr} \{ A_0 F_{jk} \} \right]$$

Canonical momenta

$$\Pi_j^a = \frac{\kappa}{2} \epsilon_{jk} A_k^a .$$

 $\Pi_j^a \to -i\delta/(\delta A_j^a)$ as usual.

 $G_j^a = \Pi_j^a - (\kappa/2)\epsilon_{jk}A_k^a = 0$ are second class constraints.

Only a half of them can be implemented

$$(\hat{G}_1^a + i\hat{G}_2^a)\Psi[A] = 0$$
 or $(\hat{G}_1^a - i\hat{G}_2^a)\Psi[A] = 0$

- WE calculate the index via the effective Hamiltonian in small finite volume, $g^2L \ll 1$. Similar to the index calculation for 4d theories (Witten, 82).
 - Consider the 4d pure SYM theory.
 - Small volume $g^2(L) \ll 1$
- Periodic b.c. $A_j(x+L,y,z) = A_j(x,y,z)$, etc.
 - Expand in modes.

Born-Oppenheimer approach

slow variables:
$$C_j^{a=1,\dots,r}\equiv A_j^{\operatorname{Cartan}(\vec{0})}$$
 and $\lambda_{\alpha}^{a=1,\dots,r}\equiv \lambda_{\alpha}^{\operatorname{Cartan}(\vec{0})}$.

fast variables: all the rest

to leading order

$$H^{\text{eff}} = \frac{1}{2} (P_j^a)^2, \quad a = 1, \dots, r \text{ (rank of the group)}$$

• for SU(2), just 3 bosonic (C_j) and 2 holomorphic fermion (λ_{α}) variables.

One sees four vacuum states: $C, C\lambda_{\alpha}, C\lambda_{\alpha}\lambda^{\alpha}$.

• But original wave functions are gauge invariant.

Ergo effective wave functions are Weyl invariant

(rotation by π around 2-nd color axis),

$$\Psi(-C_j, -\lambda_\alpha) = \Psi(C_j, \lambda_\alpha)$$

- \bullet Two bosonic Weyl invariant functions: C and $C\lambda_{\alpha}\lambda^{\alpha}$
 - $\bullet I_W = 2.$ $I_W = N \text{ for SU(N)}.$

SYMCS

assume $g^2L \ll 1$

Slow variables: $C_{j=1,2}^{a=1,...,r} \equiv A_j^{\text{Cartan}(\mathbf{0})}$ and $\lambda^{a=1,...,r} \equiv \lambda_{1-i2}^{\text{Cartan}(\mathbf{0})}$.

Leading order (N=2)

$$H^{\text{eff}} = \frac{g^2}{2L^2} \left(P_j - \frac{\kappa L^2}{2} \epsilon_{jk} C_k \right)^2 + \frac{\kappa g^2}{2} (\lambda \bar{\lambda} - \bar{\lambda} \lambda) .$$

- Landau problem on a finite (dual !) torus, $C_{j=1,2} \in (0, 4\pi/L)$
- Index = magnetic flux = 2k. (Dubrovin, Krichever, Novikov, 76)

$$SU(N): \quad H = \frac{g^2}{L^2} \left[\frac{(P_j^a + \mathcal{A}_j^a)^2}{2} + \frac{1}{2} \mathcal{B}^{ab} (\lambda^a \bar{\lambda}^b - \bar{\lambda}^b \lambda^a) \right] ,$$

where $\mathcal{B}^{ab} = \epsilon_{jk} \partial_j^a \mathcal{A}_k^b$.

• At the tree level,

$$\mathcal{A}_j^a = -\frac{\kappa L^2}{2} \epsilon_{jk} C_k^a ,$$

implying

$$\mathcal{B}^{ab} = \kappa L^2 \delta^{ab} \ .$$

• The index

$$I = \frac{1}{(2\pi)^r} \int_{T \times T} \prod_{ja} dA_j^a \det \|\mathcal{B}^{ab}\| = Nk^{N-1} .$$

(Cecotti + Girardello, 82).

Vacuum wave functions, SU(2)

• boundary conditions

$$\Psi(x+1,y) = e^{-2\pi i k y} \Psi(x,y)
\Psi(x,y+1) = e^{2\pi i k x} \Psi(x,y)
(x = C_1 L/(4\pi), y = C_2 L/(4\pi)).
\Psi_m \sim e^{-\pi k \bar{z} z} e^{\pi k \bar{z}^2} Q_m^{2k}(\bar{z})$$

 $\bullet \ \bar{z} = x - iy,$

$$Q_m^{2k}(\bar{z}) = \sum_{n=-\infty}^{\infty} \exp\left\{-2\pi k \left(n + \frac{m}{2k}\right)^2 + 4\pi i k \bar{z} \left(n + \frac{m}{2k}\right)\right\},$$

$$m = 0, \dots, 2k - 1.$$

• Weyl-invariant combinations

Figure 1: Maximal torus and Weyl alcove for SU(3). a and b - simple coroots. The points \square and \triangle - fundamental coweights.

Vacuum wave functions, SU(N=3)

• Motion on $T \times T$, T being the maximal torus formed by simple coroots $\mathbf{a} = (1,0)$ and $\mathbf{b} = (-1/2, \sqrt{3}/2)$. They satisfy $\exp\{4\pi i a^a t^a\} \equiv \exp\{iLC^a t^a\} = 1$). Shifts along \mathbf{a} or \mathbf{b} are gauge transformations.

• boundary conditions

$$\Psi(\mathbf{x} + \mathbf{a}, \mathbf{y}) = e^{-2\pi i k \mathbf{a} \mathbf{y}} \Psi(\mathbf{x}, \mathbf{y}) ,$$

$$\Psi(\mathbf{x} + \mathbf{b}, \mathbf{y}) = e^{-2\pi i k \mathbf{b} \mathbf{y}} \Psi(\mathbf{x}, \mathbf{y}) ,$$

$$\Psi(\mathbf{x}, \mathbf{y} + \mathbf{a}) = e^{2\pi i k \mathbf{a} \mathbf{x}} \Psi(\mathbf{x}, \mathbf{y}) ,$$

$$\Psi(\mathbf{x}, \mathbf{y} + \mathbf{b}) = e^{2\pi i k \mathbf{b} \mathbf{x}} \Psi(\mathbf{x}, \mathbf{y}) ,$$

• zero energy eigenfunctions

$$\Psi_w = \sum_{\mathbf{n}} \exp \left\{ -2\pi k(\mathbf{n} + \mathbf{y} + \mathbf{w}_n)^2 - 2\pi i k \mathbf{x} \mathbf{y} - 4\pi i k \mathbf{x} (\mathbf{n} + \mathbf{w}_n) \right\} ,$$

with $\mathbf{w}_n \mathbf{a}$ and $\mathbf{w}_n \mathbf{b}$ being integer multiples of 1/(2k).

• The # of Weyl invariant states is counted as the # of the points \mathbf{w}_n in the Weyl alcove.

Figure 2: SU(3): 15 vacuum states for k = 4. The dotted line marks the boundary of the Weyl alcove for G_2 (9 states).

This gives

$$I_{SU(3)}^{\text{tree}}(k>0) = \sum_{m=1}^{k+1} m = \frac{(k+1)(k+2)}{2} = \begin{pmatrix} k+2 \\ 2 \end{pmatrix}.$$

For any N, k,

$$I_{SU(N)}^{\text{tree}}(\text{any } k) = [\text{sgn}(k)]^{(N-1)} \begin{pmatrix} N + |k| - 1 \\ N - 1 \end{pmatrix}.$$

Symplectic groups:

$$I_{\mathrm{Sp}(2r)}^{\mathrm{tree}} = (-1)^r \begin{pmatrix} |k| + r \\ r \end{pmatrix}$$
.

 G_2 :

$$I_{G_2}^{\text{tree}}(k) = \left\{ \begin{array}{ll} \frac{(|k|+2)^2}{4} & \text{for even } k \\ \frac{(|k|+1)(|k|+3)}{4} & \text{for odd } k \end{array} \right\}.$$

Coincides with the state counting in pure CS theory!

LOOP CORRECTIONS

(specific for 3d!)

1-loop renormalization

$$k(>0) \rightarrow k - N/2 \text{ (fermions)} + N \text{ (gluons)}$$

- known in infinite volume (Pisarski + Rao, 85; Kao + Lee + Lee, 96).
 - True also in finite volume.
 - No renormalization beyond one loop.
- substituting $k \to k N/2$ in the tree level index (taking into account only fermion corrections) gives Witten's result.
 - ??? What about gluon loop corrections ???

Resolution of the paradox

Philosophical level

the shift $k \to k + N$ due to gluon loops is an immanent feature of pure CS (shows up in Wilson loop expectation values, etc.) and should not be counted twice.

Scientific level

- Take N=2.
- Extra fluxes brought about by fermion and gluon loops are concentrated in the corners of the dual torus,

$$C_j = (0,0);$$
 $C_j = (2\pi/L,0);$ $C_j = (0,2\pi/L);$ $C_j = (2\pi/L,2\pi/L),$

where the BO approximation breaks down.

- in the massless limit \rightarrow flux lines.
- Effective corner theory: non-Abelian SQM.

$$H_{\rm corner} =$$

Accurate analysis:

matching the vacuum wave functions of two H_{eff} : (i) on the Abelian valley and (ii) in a corner.

• Dictates the valley wave functions that are not singular at the corners,

$$\Psi_m \propto \prod_{np} \left(\frac{z + n/2 + ip/2}{\bar{z} + n/2 - ip/2} \right)^{1/4} Q_m^{2k-2}(\bar{z}) \sqrt{Q_3^4(\bar{z}) - Q_1^4(\bar{z})}$$

- The argument of the square root has 4 zeros in 4 corners.
 - branchings in the corners are cancelled.
- m = 1, ..., 2k 2 giving finally k (rather than k + 1) Weyl invariant states.