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MOTIVATION

e Widely known : Maldacena duality
AdSs x S° « N =4 4d SYM

e New duality (Bagger + Lambert, 07;
Aharony 4+ Bergman + Jafferis + Maldacena, 08)

AdS4><S7 or AdS4><CP3 —
N =8or N =6 3d SCS

DYNAMICS ?



THE SIMPLEST VARIANT
N =13dSYM + CS
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A1,2 - Majorana fermion.

e A chiral gauge theory.

e mass scale m = kg°.

e Gauge invariance dictates for £ = 4wk to be
integer (the level).

Vacuum dynamics ?



Witten index

Iy = Tr{(—l)Fe_ﬁH} =7

The result (Witten, 99)

I(k,N) = (Sgn(k))N_1< \kH]—V N_/z1 _1>

e for SU(N) group
if k| > N/2.

o I(k,N) =0 if |k| < N/2.

e Spontaneous SUSY breaking at |k| < N /2.



Witten’s derivation

e Consider the theory in a LARGE spatial
box, ¢g°L > 1

e Integrate mentally over fermions. k is renor-
malized. For positive k,

N
ko k.
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e The coupling ¢g? is also renormalized. New
higher derivative terms appear. Irrelevant at large
volume !

e We obtain a pure CS theory with renormal-
ized coupling.

e Topological theory, a finite number of states.

#of vacuum states in SYMCS (k) — #of states in CS(k_N/Q) .



Clever people can calculate the # of states in
pure CS using the correspondence

pure CS <« 2d WZNW <« 2d conformal theo-
ries

e Number of states on the left equals number
of conformal blocks on the right.

e This gives (k > 0)

N+Ek—-1
#CS:< N1 )



canonical quantization
(Elitzur + Moore + Schwimmer + Seiberg, 89;
Labastida + Ramallo, 89)

pure CS Lagrangian

ECS = —lﬁléjk [Tr{AjAk} + TI'{Aonk}
Canonical momenta

a K a
1% — —id/(0A%) as usual.

G = 11§ — (k/2)ej AL = 0 are second class
constraints.
Only a half of them can be implemented

(G4 +iGHU[A] = 0 or (GY—iGHU[A] = 0



e WE calculate the index via the effective Hamil-
tonian in sman finite volume, ¢?L < 1. Similar to
the index calculation for 4d theories (Witten, 82).

e Consider the 4d pure SYM theory.
e Small volume g*(L) < 1
e Periodic b.c. A;j(z+ L,y,2) = Aj(x,y,2) ,

etc.
e Expand in modes.
Born—Oppenheimer approach
slow variables: CS="" = ASartaD(O) and A&~ =
)\Cartan(ﬁ)
a .

fast variables: all the rest



to leading order

1
He = §(ij)2’ a=1,...,r (rank of the group)
e for SU(2), just 3 bosonic (C;) and 2 holo-
morphic fermion (\,) variables.

One sees four vacuum states: C,CA,, CA Y.

e But original wave functions are gauge invari-
ant.

Ergo effective wave functions are Weyl invari-
ant

(rotation by 7 around 2-nd color axis),

qj(_Cja _)‘a) — qj(ij )‘oz)

e T'wo bosonic Weyl invariant functions: C and

C Ao A



SYMCS

assume g2L < 1

: =1,... Cartan (0 _
Slow variables: C¢=. 5" = A" an(0) . 4 \a=Lor
]—1,2 i

Cartan(0)
)\1—2’2 :

Leading order (N = 2)

2 L2 2 2 B B
H = 29? (Pj - %%Ck> + %()\)\—)\)\) :

e Landau problem on a finite (dual !) torus,
Cjzl’z c (O, 47T/L)

e Index = magnetic flux = 2k.  ( Dubrovin,
Krichever, Novikov, 76)
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ab _ _ 9a Ab
Whel‘e B — Ejkgj Ak

o At the tree level,

kL2
A;L — —TEJkC]? ,
implying
B = gL*§ .
e The index
1
I = dA% det| B = NEN 1
oo [ TTaas aeus

X T ja

(Cecotti + Girardello, 82).



Vacuum wave functions, SU(2)

e boundary conditions
V(zr+1ly) = e ™M U(z,y)
U(z,y+1) = " U(z,y)
(ZL‘ — ClL/(47T), Yy = CQL/(47T))
\Ijm -~ e—ﬂkizewkEQ Q%r]f(z)

ez =1 — 1y,

o

Q%= Y eXp{—Qﬂk (n+ %)2—|—47Tikz (n—l—%)}

m=20,...,2k—1.

e Weyl-invariant combinations



Figure 1: Maximal torus and Weyl alcove for
SU(3). a and b - simple coroots. The points []
and A - fundamental coweights.

Vacuum wave functions, SU(N=3)

e Motion on 7' x T', T' being the maximal torus
formed by simple corootsa = (1,0) and b = (—1/2,/3/2).
They satisfy exp{4mia®t®} = exp{iLC*} =1 ).
Shifts along a or b are gauge transformations.



e boundary conditions

U(x+ay) = e ™VU(x,y),
U(x+b,y) = e 7"U(x,y),
U(x,y +a) = T U(xy),
U(x,y+b) = PU(xy),

e zero energy eigenfunctions

U, =
Z exp {—2mk(n+y + w,)° — 2mikxy — 4mikx(n+wy,)} |
with w,a and w,,b being integer multiples of 1/(2k).

e The # of Weyl invariant states is counted as
the # of the points w,, in the Weyl alcove.



Figure 2: SU(3): 15 vacuum states for k = 4. The
dotted line marks the boundary of the Weyl alcove
for G5 (9 states).

This gives

k41
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For any NV, k,

ree — N_l_ k - 1
55y (any k) = [sgn(k)]™N 1)( N‘—|1 ) |

Symplectic groups:

ree T k —1—’]"
I§yGn = (=1) ( H ) :

T

GQZ

ey - g et |
Go <|k|+1)4<lkl+3> for odd k

Coincides with the state counting in pure CS
theory !



LOOP CORRECTIONS
(specific for 3d !)

1-loop renormalization

k(> 0) — k— N/2 (fermions) + N (gluons)

e known in infinite volume (Pisarski + Rao,
85; Kao 4+ Lee + Lee, 96).

e True also in finite volume.
e No renormalization beyond one loop.

e substituting £k — k— N/2 in the tree level in-
dex (taking into account only fermion corrections)
gives Witten’s result.

777 What about gluon loop corrections 777



Resolution of the paradox

Philosophical level
the shift £ — k£ 4+ N due to gluon loops is an
immanent feature of pure CS (shows up in Wilson
loop expectation values, etc.) and should not be
counted twice.

Scientific level

e Take N = 2.

e Extra fluxes brought about by fermion and
gluon loops are concentrated in the corners of the
dual torus,

Cj — (0,0), Cj — (27T/L,0);
C; = (0.2/L);  C; = (2r/L,2w/L) .
where the BO approximation breaks down.

e in the massless limit — flux lines .
e Effective corner theory: non-Abelian SQM.

HPF\Y‘Y'I oor



Accurate analysis:
matching the vacuum wave functions of two
Heg: (2) on the Abelian valley and (7:) in a corner.
e Dictates the valley wave functions that are
not singular at the corners,

el (55 0s) @ eae oo

e The argument of the square root has 4 zeros
in 4 corners.

e branchings in the corners are cancelled.

e m = 1,...,2k — 2 giving finally k£ (rather
than k£ 4+ 1 ) Weyl invariant states.



