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IMPORTANT DISCOVERY

Universality of ’% - % .

Strong coupling behaviour of
conformal gauge theories, Kovtun, Son
and Starinetes (KSS bound)
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Upon release from a cigar-shaped trap, a
cloud of strongly interacting lithium-6 atoms
experiences a pressure gradient that is larger
In the transverse directions than in the
longitudinal direction. As a result, it expands
and changes in shape from cigar to ellipse.
Such elliptic flow arises In a quark-gluon
plasma as well, and It Is a consequence of
very low VISCOSIty hydrodynamics
characteristics of a nearly perfect fluid. The
color scale indicates density, with red more
dense and light blue less dense. Time
Increases from 0.1 ms after release (top
Image) to 2 ms (bottom Image).
(K. M. O’Hara et al., Science, 2002)



The superfluid-to-normal- fluid
transition for lithium-6, a
strongly interacting Fermi gas, IS
signaled by a change in the
scaling of energy with entropy.
On this plot, the energy per
particle is divided by the Fermi
energy of an ideal Fermi gas at
the trap center, and the entropy
per particle is divided by
Boltzmann’s constant. The data
Indicate that the transition takes
place at a normalized energy of
about 0.8. For comparison, the
green curve shows the energy-
entropy plot for an ideal Fermi
gas.
(Luo & Thomas, J. Low Temp.
Phy., 154, 1, 2009)
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The experimentally determined ratio of shear viscosity to entropy
density (n / s, red data points) for normal, strongly interacting lithium-6
Is comparable to the conjectured lower bound inspired by string theory
(green line). The energy per particle is normalized to the Fermi energy; in
those units the superfluid-to-normal-fluid transition occurs at an energy
of 0.8. The statistical error bars do not include possible systematic errors
arising from the model used to estimate the viscosity. 5
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quark-gluon plasma

Current conjectures for
the QCD phase diagram.
The phase boundary
(solid line) between the
normal low-temperature
hadronic phase of bulk
QCD matter and the
high-temperature
partonic phase is a line
of first order phase

8 transitions which
Baryon Chemical Potential ug/T, begins at large pB and
small T and curves
towards smaller pB and
larger T.

O
.
I_

0
| .
=
i
5
of
=
0
I_




| T T

FAIR/NICA quark-gluon plasma
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Baryon Chemical Potential pg/T-

The red-yellow dotted line corresponds to the
chemical freeze-out line from the evolution of the
bulk QCD matter produced in high energy heavy-
ion collisions. The solid point at
T =0 and pB = 938 MeV represents nuclear matter
in the ground state. At large
pB and low T is the color superconductor phase

(CSC)

This line ends at the
QCD critical point
whose probable
position, derived from
lattice computations, Is
marked by a square. At
even smaller pB there
are no
phase transitions, only
a line of cross-overs
(shown by a dashed
line).
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Quark Gluon Plasma

UHigh temperature
r\ High density
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Early
universe

Early
universe,
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Hydrodynamic models to experimental data on
charged hadron integrated elliptic flow by PHOBOS
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Hydrodynamic models to experimental data on
charged hadron minimum bias elliptic flow by STAR
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Quark-Gluon Plasma: A Perfect Fluid

M.Luzum & R. Romatschke
Viscous Hydrodynamics PRC 78 034915 (2008)
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Roy A. Lacey et. al
PRL 98, (2007) 4
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n/s vs (T — T,)/T, for several substances as
indicated. The calculated values for the meson gas have an

associated error of ~50% [46]. The lattice QCD value T, =

170 MeV |48] is assumed for nuclear matter. The lines are drawn
to guide the eye.
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The ratio 77/3 of the shear viscosity 1] to the entropy
density S is uniquely suited to determine how strongly
the excitations in a guantum fluid interact. We determine

77/3 In clean undoped graphene using a quantum Kinetic

theory. As a result of the quantum criticality of this

system the ratio is smaller than in many other correlated

quantum liguids and, interestingly, comes close to a lower

bound conjectured in the context of the quark gluon plasma.
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Classical Nuclear Physics
Collective Phenomena

1. Gilant Resonances/proton & neutron
fluids Hydro dynamical model => widths

of resonances to the viscosity of the
proton — neutron fluids

20



2. Fission process

Athightemp: T Ss % o

2
n_ ) 16 (E & j = j—>Neutron Star?

S drk, S7

T =1 M,

Unusually similar to RHIC results

What about Giant dipole resonances on highly

excited state —> V
S

Auerbach & Shlomo, PRL, 103, 172501 (2009)
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conjectured
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The strongly coupled plasma

By 2004, RHIC experiments determined and
reported several key properties of the hot, dense matter.
Its opacity to energetic quarks and gluons indicates
extremely high density. Hydrodynamic descriptions
reproduce the data and describe the collision from early
times through expansion, cooling, and hadron
formation, but only If n/s is taken to be very small. The
system Is therefore not the weakly coupled gas of almost
freely moving gquarks and gluons one would naively
expect from asymptotic freedom. Instead, it is strongly
coupled.

26



The stronqgly coupled plasma

The strong coupling Implies that some
correlation among the quarks and gluons may survive
within the plasma phase near T. and produce
multiplarticle interactions with near neighbors.
Indeed, lattice QCD studies of energy-density
correlations in a QGP at temperatures of 1-2 T, show
small correlation peaks. The correlation is similar to
the short-range order observed in ordinary liquids
near the liquid-gas phase transition.
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It IS remarkable that both the coldest and the hottest

matter on Earth exhibit very similar elliptic flow
patterns, with 77/5 near the conjectured lower bound,

AdS/CFT.

What does the “FLOW” at LHC tell us about 7; /s

Intriguing, Interesting, Captivating !!!

28



Effect of viscosity on photon spectra and elliptic flow:
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Validity of hydrodynamics require that non-equilibrium contribution to
photon spectra is smaller than the equilibrium contribution. For AdS/CFT
limit for viscosity to entropy ratio, n/s=1/4=, hydrodynamics is applicable
only in a limited pT region (marked by the arrow).

It is important to have a consistent model, e.g. neglect of non-equilibrium
correction to distribution function can lead to increased elliptic flow.
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Space-time evolution of the fluid was obtained by
solving Israel-Stewart's 2nd order hydrodynamics,

0,T"" = 0; (energy-momentum conservation equation)
1 ,

Dn# = ——(a" — 2V <Fu¥>) — [ > 4 u¥ 7] Duy,.
Tr

(relaxation equation for shear stress tensor)

Hydrodynamic equations are closed with an equation of
state (EOS). We use an EOS based on Wuppertal-Budapest lattice
simulation.

With initial conditions appropriate for 200 GeV Au+Au
collisions, the equations are solved with the code AZHYDRO-
KOLKATA developed at the Cyclotron Centre, Kolkata.

viz : Chowdhury and Sinha as cited



In a hydrodynamic model, invariant
distribution of photon and dilepton are
obtained by convoluting the photon/dilepton
rate over the space-time evolution of the QGP
fluid produced in the collisions. In the
following we study viscous effects on photon
and dileptons. Some of the details of the
model can be found in [1].

[1] A. K. Chaudhuri and B. S., Phys. Rev. C83(2011)034905.
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Viscous effect on dilepton production:

Production rate of dileptons of invariant mass M, from the OGP phase
can be approximated as [3],
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similar to photons, viscous effects on dilepton production is also large.

pT spectrais hardened, elliptic flow is reduced.

Also, viscous hydrodynamics remain applicable only in a limited pT range.
Applicability range increase with invariant mass. 32
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ALICE data for charged particles elliptic flow
In 20-30%, 30-40% and 40-50% collision are
best explained for fluid viscosity 7 /s= 0.08.
In very central 10-20 % collisions however,
ALICE data prefer ideal fluid rather than

a viscous fluid.
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The ratio is largely p+ independent. The p+
dependence of non-equilibrium correction
largely cancels out. For low dilepton invariant
mass M = 300 MeV, as expected, the ratio do
not distinguish between viscosities, the curves
are nearly identical for . For
invariant mass M = 600 of}é@ﬂ)lwem on the
other hand, the ratio depends on viscosity.
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For dilepton mass M = 600 MeV, if
the ratio Is measured within 10 %
accuracy, viscosity to entropy ratio
can be estimated within an
accuracy of ~ 5 %. The sensitivity
IS Increased to ~ 2 % for invariant
mass M = 900 MeV.
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Our analysis indicates that the specific
viscosity of the QGP produced in LHC
collisions is similar to that for the

strongly coupled QGP produced

In RHIC collisions.
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The temperature dependence of %is not yet

discovered. | believe there is substantial hope

to discover the temperature dependence of %

and so, a more precise determination of the
critical point (if it at all exists) as we reach

the highest energy of LHC.




= Temperature dependence of y/s:

The average elliptic flow

v, =| ‘ N(E.w,(p,)dp, | | N(p,)dp, ]

INn 20%-30% centrality increase by 25%
from RHIC to LHC.
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Even this Increase mainly
reflects the observed increase In the
average p; rather than an increase
of the differential elliptic flow
V,(p1). This latter changes very little
from /S,y = 39 GeV upto the new
LHC data point.
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This saturation of v, at around or below
39 GeV clearly Indicates that the
“perfect fluid” property of the QGP
discovered at RHIC is valid for LHC

energies to at least 2.76 TeV.
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On a pedagogical level 77/ s {? 1/ {zj It
changes very little as one goes from
RHIC —» LHC. Even at the highest level
of energy to be achieved at LHC 5.5 TeV,
our prediction is 77 /s will not change

perceptibly.
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Clearly, seemingly unrelated systems lead
to somewnhat similar values of # /s - from
the QGP of the perfect fluid produced at
RHIC on to LHC, to Ultra Cold Quantum
degenerate strongly Interacting nearly
Fermi gas, to the microsecond early
universe to neutron star, Graphene to even

Glant Resonances In finite nucleil.
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The fundamental reason for that
unexpected universality linking energy
scales some 18 orders of magnitude can be
traced to universality In few body physics.

Efimov’s (PLB 33, 1970)
astonishingly and counterintuitive
prediction highlighted this years ago. This
IS manifest for Graphene, atomic nucleus

and cold Fermi gas.
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Indeed, In a different guise, the strong
coupling at the phase transition point
Implies that some correlation among
the quarks and gluons may Indeed
survive within the plasma near the
critical temperature and go on to
produce multi-particle Interactions
with immediate neighbours.
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The correlation iIs rather similar to the
short range observed In ordinary liquid
near the phase transition to gas. It has
all to do with the point of phase
transition with strong correlation and
nothing else! All we need Is strongly
Interacting system of any system.
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Now,
Neutron Star

&
The Early Universe (Micro second)
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Strongly interacting matter in neutron stars

qiuark-hybrid traditional neutron star
star

hyperon

star neutron star with

pion condensate

Fe
absolutely stable 6 3
strange quark 10~ g/em
matter - 11 glem 3
m uld|s 10 14 glem 9
m
-]

strange star

neutron star

F. Weber J.Phys. G27 (2001) 465 M~14 Mg
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Strongly interacting matter in neutron stars

qiuark-hybrid traditional neutron star
star

hyperon

star neutron star with

pion condensate

fr j‘

‘;? A Fe
a®om?
matter 10 11 glom 3
m uldl|s 10 14 glem 3
i

“Strangeness" of dense matter ?
In-medium properties of hadrons ?
Compressibility of nuclear matter?

Deconfinement at high baryon densities ?
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Strange quark nuggets (SQN)
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CEFT MODEL

Glendenning & matsui -1983

________

_________

Sumiyoshi et al 1990

Baryon evaporation
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Chromo electric Flux-tube fission

P. Bhattacharya
J. Alam
S. Raha
B.S. (PRD ’93)

dNg /dt = [dNg/dt],, + [dNg/dt],..

[dNg/dt]ps = -2m* [ Ny vy / My T2 exp [my- py®/ T][dNg /dt] o,
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Q N’s with baryon number Ng at time t will
stop evaporating (survive) If the time scale of
evaporation

Tev(NB’t) = NB
dNp / dt

>> H1(t) = 2t of the universe
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This fascinating universality,
It seems, has opened up

entirely new domain of physics.
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THROUGH
THE LOOKING GLASS

L ewis Carroll

Alice In Quark Land

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes — and ships — and sealing-wax-
Of cabbages — and Kings-
And why the sea is boiling hot -
And whether pigs have wings.”
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