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Thermo-electricity – Peltier-Seebeck effect

V = (SB − SA)(T2 − T1)
S = −∆V

∆T
= E

∇T

Thomas Johann Seebeck, born in Reval (today Tallinn, Estonia)
(1770 – 1831) was a physicist who in 1821 discovered the
thermoelectric effect, where a junction of dissimilar metals produces
an electric current when exposed to a temperature gradient. This
effect is the basis of thermocouples and thermopiles.
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Large thermoelectric effect in graphene

Wang, Shi, PRB 83, 113403 (11). Wei et al., PRL 102, 166808 (09).
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Heat and electric transport equations
Electric field E and temperature gradient ∇T result in electric and
heat currents.

{
j = σE + β∇T ,
q = γE + ζ∇T ,

It is easier to control
j rather than E,
express via j.

{
E = ρj + S ∇T ,

q = Π j − κ∇T ,

Onsager relation: γ = −βT

S.G. Sharapov (BITP) Thermoelectric power Ginzburg Conference 4 / 15



Heat and electric transport equations
Electric field E and temperature gradient ∇T result in electric and
heat currents.

{
j = σE + β∇T ,
q = γE + ζ∇T ,

It is easier to control
j rather than E,
express via j.

{
E = ρj + S ∇T ,

q = Π j − κ∇T ,

Onsager relation: γ = −βT

Seebeck coefficient:

S = −
β

σ

Peltier coefficient:

Π =
γ

σ
= ST

S.G. Sharapov (BITP) Thermoelectric power Ginzburg Conference 4 / 15



Heat and electric transport equations
Electric field E and temperature gradient ∇T result in electric and
heat currents.

{
j = σE + β∇T ,
q = γE + ζ∇T ,

It is easier to control
j rather than E,
express via j.

{
E = ρj + S ∇T ,

q = Π j − κ∇T ,

Onsager relation: γ = −βT

Seebeck coefficient:

S = −
β

σ

Peltier coefficient:

Π =
γ

σ
= ST

Approximate Mott’s formula:

β =
π2

3

k2
BT

e

∂σ

∂µ
=⇒ S = −

π2

3

k2
BT

e

∂ lnσ

∂µ

Notice that kB/e ≈ 86µV /K close to observed in graphene which
is much larger than in metals.
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Peltier effect in graphene nanoelectronics

The temperature of the graphene
device during device operation.
K.L. Grosse et al., Nature
Nanotechnology 6, 287 (11).

Specific heat per unit time
W = ρj2 + (Πa − Πb)j , where
ρ = 1/σ is the resistivity.
Thermoelectric effect in graphene
accounts for up to one-third of the
contact temperature changes and
thus it can play significant role in
cooling down of such systems.
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Odd- and evenness of transport coefficients
Normal metal case

σ =
e2

3

∫ ∞

−∞

dǫ[−n′
F (ǫ)]v

2
Fν(µ+ ǫ)τ(µ + ǫ) ≈

e2

3
[v 2

Fν(µ)τ(µ)]

β =
e

3T

∫ ∞

−∞

dǫ ǫ [−n′
F (ǫ)]v

2
Fν(µ+ ǫ)τ(µ + ǫ)
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If the product v 2
Fν(µ + ǫ)τ(µ+ ǫ) is a smooth

function of ǫ, one can expand it:
v 2
Fν(µ + ǫ)τ(µ+ ǫ) ≈

v 2
Fν(µ)τ(µ) + ǫ d

dµ
[v 2

Fν(µ)τ(µ)]

1st term = 0 due to oddness, and contributes
2nd.

Arrive at Mott’s formula and S = −π2

3

kB

e

kBT

µ
∼ 10−3µV /K much

smaller than observed in graphene.
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Band structure of graphene
H = −t

∑

n,δδδi ,σ

[
a†
n,σbn+δδδ,σ + c.c.

]
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Two bands touch each other and
cross the Fermi level in six K

points located at the corners of
the hexagonal 2D Brillouin zone.

S.G. Sharapov (BITP) Thermoelectric power Ginzburg Conference 7 / 15



Band structure of graphene
H = −t

∑

n,δδδi ,σ

[
a†
n,σbn+δδδ,σ + c.c.

]

akxaky

-2

0

2

Ε�t

2

0

2

�

Two bands touch each other and
cross the Fermi level in six K

points located at the corners of
the hexagonal 2D Brillouin zone.

a1

a2

∆1

∆2

∆3

HaL

A

B

b1

b2

K -K-K

HbL

(a) Graphene hexagonal lattice
can be described in terms of two
triangular sublattices, A and B.
(b) Hexagonal and rhombic
extended Brillouin zone (BZ).
Two non-equivalent K points in
the extended BZ, K− = −K+.
P.R. Wallace, PR 71, 622 (1947).
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Low-energy excitations in graphene

Low-energy excitations at two inequivalent K+,K− points have a
linear dispersion Ep = ±~vF |p| − µ with vF ≈ 106 m/s and µ being
the chemical potential.
Each K point described by the spinor: ψT

K ,σ =
(
ψKAσ, ψKBσ

)

HK+
=

∑

σ=±1

∫
d2p

(2π)2
ψ†

K+σ

(
0 ~vF (px − ipy )

~vF (px + ipy ) 0

)
ψK+σ.

where the momentum p = (px , py ) is already given in a local
coordinate system
Semenoff, PRL 53, 2449 (1984)
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∫
d2p

(2π)2
ψ†

K+σ

(
0 ~vF (px − ipy )

~vF (px + ipy ) 0

)
ψK+σ.

where the momentum p = (px , py ) is already given in a local
coordinate system
Semenoff, PRL 53, 2449 (1984)
K+ and K− points are related by time-reversal symmetry.
What is about spatial inversion P? Graphene’s Hamiltonian does
not break it, but let’s break it by making sublattices inequivalent...
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Is there a gap in graphene?

HK+
=

∑

σ=±1

∫
d2p

(2π)2
ψ†

K+σ

(
∆ ~vF (px − ipy )

~vF (px + ipy ) −∆

)
ψK+σ.

The presence of ∆ 6= 0 breaks P : [x → −x , y → −y ,A ⇆ B] and

makes the spectrum E (p) = ±
√

~2v 2
Fp2 +∆2 with the mass ∆.
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~2v 2
Fp2 +∆2 with the mass ∆.

Gap can be induced by interaction with substrate.

S.Y. Zhou et al., Nature Mat. 6, 770 (07).

D.A. Siegel et al. (12), graphene on Cu.

Observation of the gap opening in
single-layer epitaxial graphene on a SiC
substrate at the K point.
(a) Structure of graphene in the real and
momentum space.
(b) ARPES intensity map taken along
the black line in the inset of (a).
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D.A. Siegel et al. (12), graphene on Cu.

Observation of the gap opening in
single-layer epitaxial graphene on a SiC
substrate at the K point.
(a) Structure of graphene in the real and
momentum space.
(b) ARPES intensity map taken along
the black line in the inset of (a).

How the gap affects thermopower?
S.G. Sharapov (BITP) Thermoelectric power Ginzburg Conference 9 / 15



Quasiparticle scattering near ETT

Possible types of electron
scattering for a double valley
Fermi surface.
A.A. Varlamov, V.S. Egorov,
and A.V. Pantsulaya, Adv. in
Phys. 38, 469 (1989).

(a) Scattering processes which do not
involve the small valley.
(b) Scattering processes where
electron gets to the small void, but
then gets back to the continuous part
of the Fermi surface.

S.G. Sharapov (BITP) Thermoelectric power Ginzburg Conference 10 / 15



Quasiparticle scattering near ETT

Possible types of electron
scattering for a double valley
Fermi surface.
A.A. Varlamov, V.S. Egorov,
and A.V. Pantsulaya, Adv. in
Phys. 38, 469 (1989).

(a) Scattering processes which do not
involve the small valley.
(b) Scattering processes where
electron gets to the small void, but
then gets back to the continuous part
of the Fermi surface.

In vicinity of the critical point µ = µc ,
when the Fermi surface connectivity
changes, the quasiparticle relaxation
rate τ−1(ε) ≡ Γ(ε) also acquires the
contribution strongly depending on
energy, what generates kinks in
conductivity and peaks in
thermopower.
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Scattering in gapped graphene

Zero mass, ∆ = 0

K+ K-

HaL

p
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ΜEHpL=±ÑvFp

(a) Linear dispersion,
µ = 0 as in
compensated
graphene.

Gapped, ∆ 6= 0

K+ K-

HbL
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D2 + Ñ2 vF
2 p2

(b) A possible
modification of the
spectrum by the finite
gap ∆. µ is shifted
from zero by the gate
voltage.

Self-consistent
equation for
self-energy:

Use relatively
long-range potential

V̂ (q), i.e. ignore
scattering between

K±, but assume V̂ (q)
to be momentum
independent for the
intra-valley scattering.

Control parameter: |∆| < ?? > |µ|
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Quasiparticle scattering in graphene

The self-energy Σ̂(p, εn) =
∑3

i=0 σi(p, εn)τ̂i Since σ1,2 = 0,
arrive at the system

{
σR

0 (ε)
σR

3 (ε)

}
=

4~

πτ0|µ|

∫ W

0

{
ε+ µ− σR

0 (ε)
∆ + σR

3 (ε)

}
ξdξ

[
ε+ µ− σR

0 (ε)
]2

− ξ2 − [∆ + σR
3 (ε)]

2
,

A new feature, in addition to the usually considered Eq. for σ0 we
also consider Eq. for σ3 in the gap channel. Then approximately
include both channels together:

1

τ(ε)
≡ Γ(ε) = −Im σR

0 (ε)−
∆

ε+ µ
ImσR

3 (ε)

=Γ0

[
|ε+ µ|

|µ|
+

∆2

|ε+ µ||µ|

]
θ
[
(ε+ µ)2 −∆2

]
.

The relaxation rate acquires the θ
[
(ε+ µ)2 −∆2

]
contribution.
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Transport coefficients in graphene

Using Kubo formula:

{
σ
β

}
=

e2

~

∫ ∞

−∞

dεA(ε, Γ(ε),∆)

2T cosh2 ε
2T

{
1

ε/(eT )

}
,

where the function

A(ε, Γ(ε),∆) =
1

2π2

[
1 +

(µ+ ε)2 −∆2 + Γ2(ε)

2|µ+ ε|Γ(ε)

×

(
π

2
− arctan

∆2 + Γ2(ε)− (µ+ ε)2

2|µ+ ε|Γ(ε)

)]
.

We use regularized scattering rate: Γfull(ε) = Γ(ε) + γ0.
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Results

Conductivity σ(µ)
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Thermopower S(µ)
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S0 = kB/e, T = 5 K
—– ∆ = 0, Γ(ε) = const - reference case: restore normal metal case,
S = −(π2/3e)T/µ in the limit |µ| ≫ T , Γ0.
—– ∆ = 50 K, Γ(ε) = const: E. Gorbar et al., PRB 66, 045108 (02).
—– ∆ = 50 K, Γ(ε) - present work.
Thin lines – from Mott formula.
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Conclusions

Opening a gap results in appearance of a fingerprint bump of
the Seebeck signal when the chemical potential approaches the
gap edge.

Magnitude of the bump can be up 10 times higher than
already large value of S ∼ 50µV /K at room temperatures
observed in graphene.

Effect is related to a new channel of quasi-particle scattering
from impurities with the relaxation time strongly dependent on
the energy.

One can exploit the predicted giant peak of the Seebeck signal
as a signature of the gap opening in monolayer graphene.

Similar phenomenon already observed in bilayer graphene.
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