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LCFT are used in describing:

m Two-dimensional percolation and self-avoiding walks (central charge
¢ = 0). Disordered critical points.

J. Cardy, Logarithmic correlations in quenched random magnets and polymers,
cond-mat/9911024.

V. Gurarie and AW.W. Ludwig, Conformal Field Theory at central charge ¢ = 0 and
two-dimensional critical systems with quenched disorder, hep-th/0409105.
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m Two-dimensional percolation and self-avoiding walks (central charge
¢ = 0). Disordered critical points.

J. Cardy, Logarithmic correlations in quenched random magnets and polymers,
cond-mat/9911024.

V. Gurarie and A.W.W. Ludwig, Conformal Field Theory at central charge ¢ = 0 and

two-dimensional critical systems with quenched disorder, hep-th/0409105.

m Transitions between plateaux in the integer quantum Hall effect or
spin quantum Hall effect.

M.R. Zirnbauer, Conformal field theory of the integer quantum Hall plateau transition,
arXiv:hep-th/9905054v2 (1999).

I.A. Gruzberg, A.W.W. Ludwig, and N. Read, Exact Exponents for the Spin Quantum
Hall Transition, Phys. Rev. Lett. 82, 45244527 (1999).
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LCFT are used in describing:

m Two-dimensional percolation and self-avoiding walks (central charge
¢ = 0). Disordered critical points.

J. Cardy, Logarithmic correlations in quenched random magnets and polymers,
cond-mat/9911024.

V. Gurarie and A.W.W. Ludwig, Conformal Field Theory at central charge ¢ = 0 and

two-dimensional critical systems with quenched disorder, hep-th/0409105.

m Transitions between plateaux in the integer quantum Hall effect or
spin quantum Hall effect.

M.R. Zirnbauer, Conformal field theory of the integer quantum Hall plateau transition,
arXiv:hep-th/9905054v2 (1999).

I.A. Gruzberg, A.W.W. Ludwig, and N. Read, Exact Exponents for the Spin Quantum
Hall Transition, Phys. Rev. Lett. 82, 45244527 (1999).

m AdS/CFT correspondence (massless limit of nonlinear sigma models
with non-compact target spaces).

G. Gotz, T. Quella and V. Schomerus, The WZNW model on PSU(1,1|2),
JHEP03(2007)003
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Nondiagonalizable action of Ly, and possibly of some other operators. J
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What is a LCFT?

Nondiagonalizable action of Ly, and possibly of some other operators. )

log: Whence?
Let Lo ~ z% act nondiagonally:
zg'(z) = Dg(2),
zh'(z) = Ah(z) + g(2).
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zh'(z) = Ah(z) + g(2).
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What is a LCFT?

Nondiagonalizable action of Ly, and possibly of some other operators. )

log: Whence?
Let Lo ~ z% act nondiagonally:
zg'(z) = Dg(2),
zh'(z) = Ah(z) + g(2).

Solution:
g(x) = Bx®,

h(x) = Ax® + B x® log(x).
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What is a LCFT?

Nondiagonalizable action of Ly, and possibly of some other operators. )

log: Whence?
Let Lo ~ z% act nondiagonally:
zg'(z) = Dg(2),
zh'(z) = Ah(z) + g(2).
Solution:
g(x) = Bx®,
h(x) = Ax® + B x® log(x).

Logarithmic/nondiagonalizable theories:
Being logarithmic/nondiagonalizable is a property of representations

chosen

v
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What is a LCFT?

Nondiagonalizable action of Ly, and possibly of some other operators. )

log: Whence?
Let Lo ~ z% act nondiagonally:
zg'(z) = Dg(2),
zh'(z) = Ah(z) + g(2).
Solution:
g(x) = Bx®,
h(x) = Ax® + B x® log(x).

Logarithmic/nondiagonalizable theories:
Being logarithmic/nondiagonalizable is a property of representations

chosen
—even though algebras often get extended—

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conf



Typical feature of LCFTs: extended chiral algebras

m Gaberdiel-Kausch model and its (1, p) generalizations.
p=3:
W— =e Voo

il

WO = 2 PpdPp+ 5 dpdp + g\ﬁa%a%aw\ﬁaww
3 /3
+30%00p dp 0p + 5\/;9905<P5<P5%0530+ Was

and

wt = (—\Ea“gp —390%p%p + 1833 dyp

+ 126 0% 0p dp — 18 ¢ 0 Dp 6@) Voo
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Typical feature of LCFTs: extended chiral algebras

m The (p/, p) series of models (FGST).

The simplest case (2,3): J
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Typical feature of LCFTs: extended chiral algebras

m The (p/, p) series of models (FGST).

The simplest case (2, 3):
W= (3(2%)" + EPePp + BP0 Pp+ £ w0 - 25 (0%0) P
_ 310[ 54 (52@) —92%’/%84@83#:8@— 56 65g062<p8<p 23 66 ( @)2
+ B(Pp)" + B Pp(0%0) 0p + B2 () (0p)” + 0 a4¢a2 op)°
+ 2 p(0p)’ — M(0%0)*(0p)" — 2% P %0 (00)" — 3% "0 ()"

+70(2%¢)° (20)" + % P (09)° — 2 P (0p)° + (ﬁga)s — i )V
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Typical feature of LCFTs: extended chiral algebras
m The (p/, p) series of models (FGST)
The simplest case (2, 3)
W= = (%Z (¢°¢)*~ S5 o dto— 355 00 0= g5 0% 0= 755 P 6@7% Fe(3¢)?
13475 4 2 2695 ~5 3 2 2555 5 4 2891 6 2 \2 1351 6 3
576I(8 ) 0 Yt f(? pdp0 go-i—lngﬁ Xz} @6@—576\[6 (8 ap) 192\f8 pPpdp
- 19120\3f oot ap — 384f o (690) %(6390)2(52 )2 - @(63 )3690 - % ‘3499(5290)
245 a4¢a3¢62¢a¢+ 1?(7525 (64 ) (&p) + 245 65 (62 ) a¢+ 105 a5¢a3 (aw)
2248483 665062§0(a§0) _% 87(,0(64;7) 113;1\0;(62 ) +2842\2; 83 (62@) a(‘o_ 105f(a3 )2 aQ(P(a(P)Q
2 2
+ 528 0t (P0)* (0p)" + 22 % Po(op)’ - 28 Py Pe(op)’ - vk o(op)*
+ 152 (@) (20)" + B2 P (0%0)* (20)° + 2 (2°¢)* (09)* + 3 ' Pp(00)" — 780 (0¢)
+ 25 (20)° (0p)" + 158 32 % (0p)° — 25 00 (09)° + %2(80)* (09)° + 5 8% (9¢)
25 52 8 10 10 —24/3
+ 2 20(09)° + (09)' — gk 0)e 2V )
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Typical feature of LCFTs: extended chiral algebras

m The (p/, p) series of models (FGST)
1225 A4 (53@)2

The simplest case (2, 3)
2653 A6 4 23 A7 3 8 2 9
Ppdtp— g5 0" o= 115, Pp %9 7686@6(‘0764\[
2
2891 56 (6230) légilf aﬁwa3¢a<p

_ 2
w— = (%Z (°0) 3456
2555 558064906%0_
5764/3
_ 339 6490(5290)
54

B o B P o

— o8 3T P e — i P (00)” + B2 (%)% (0%0)” - T2 (%)’
+ 28 00 0% 2 0p + 12835 (% ) (09) + 28 % (% ) i + 198 95 33 (0)

-5 66%@ 52@(&0) — 52 Tp(0p)’ — 122 (%)° +2842? Pp(%p)* 0 —M(93 ) 2% (o)
+ 25 0 (0%0)* (99)” + 22 0% P (0p)* — 22 P p(00)° — 325 3 (0p)"

+ 1985 (%0) " (09)” + B %0 (%9)" (09)” + B2 (%) (00) " + F 0% P (00)" — T %0 (0)

+ 252 (0%0)° (00) " + 158 0% 2 (00)° — Bz 9*0(00)° + 42 (80)* (00)° + 5 (dp)

+ 2 P0(00)° + (90) " — 5045 O ) —2V3e

v

Recent progress in understanding the (2,3) model

Gaberdiel-Runkel-Wood

v
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Long-lasting desire:

Find a dual, algebraic description:
identfy algebraic objects that capture essential pieces of LCFT models. J
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Long-lasting desire:

Find a dual, algebraic description:

identfy algebraic objects that capture essential pieces of LCFT models.

Feigin, Gainutdinov, AS, Tipunin,
Nagatomo—Tsuchiya,

More recent:

AS, Tipunin 1101.5810; AS 1109.1767, 1109.5919.
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Long-lasting desire:

Find a dual, algebraic description:

identfy algebraic objects that capture essential pieces of LCFT models.

Feigin, Gainutdinov, AS, Tipunin,
Nagatomo—Tsuchiya,

More recent:

AS, Tipunin 1101.5810; AS 1109.1767, 1109.5919.

The dual objects are Nichols algebras. J

Semikhatov
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m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ /
i ) U
wsws+1ws - ws+1wsws+1, / -
/ ( /
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Nichols algebra

m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ /
_ ) U
wsws+1ws—ws+1wsws+l7 / - (
/

m The Nichols algebra B(X):
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Nichols algebra

m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ /
_ ) U
wsws+1ws—ws+1wsws+l7 / - (
/

m The Nichols algebra B(X): /
m B(X) =P B(X)" is a graded braided Hopf algebra such that

n=0
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Nichols algebra

m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ J /
VW Ve =V WV, Q _ /j
X1

m The Nichols algebra B(X): /
= B(X) =P B(X)(" is a graded braided Hopf algebra such that

n=0

m B(X)D = X and
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Nichols algebra

m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ /
_ ) _
waSJrl\Us = \IJS+1\U5\US+1, / =
m The Nichols algebra B(X): % ( /

= B(X) =P B(X)(" is a graded braided Hopf algebra such that
nz=0

m B(X)D = X and

n ‘B(X)(l) coincides with the space of all primitive elements
P(X) = (x e BX) | Ax = x®1+1®x)
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Nichols algebra

m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ /
_ ) _
"Uswerlws = ws+1wsws+17 / -
m The Nichols algebra B(X): % ( /
B(

X)=@P B(X)(" is a graded braided Hopf algebra such that
n=0

= B(X)D = X and

m B(X)M coincides with the space of all primitive elements
PX)={xeB(X) | Ax=x®1+1®x}

m B(X)) generates all of B(X) as an algebra.
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Nichols algebra

m a braided linear space (X, V), where ¥ : X ® X — X ® X such that

/ /
_ ) _
waSJrl\Us = \IJS+1\U5\US+1, / =
m The Nichols algebra B(X): % ( /

= B(X) =P B(X)(" is a graded braided Hopf algebra such that
nz=0

m B(X)D = X and

[ %(X)(l) coincides with the space of all primitive elements
P(X) = {xeB(X) | Ax=x®1+1®x}
)

m B(X)D) generates all of B(X) as an algebra.

B W. D. Nichols '78, S.L. Woronowicz '89, Lusztig '93
N. Andruskiewitsch and M. Grafia '99,
N. Andruskiewitsch and H.-J. Schneider '02, '05
N. Andruskiewitsch, |. Heckenberger, and H.-J. Schneider '08,
I. Heckenberger '06, '07, '09, '10, ...,
N. Andruskiewitsch, D Radford, and H.-J. Schneider '10,
|. Heckenberger and H.-J. Schneider '10,
I. Angiono 2008—. .., ....... ... ... ...
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Nichols algebra

m a braided linear space (X, V)
m The Nichols algebra B(X):

m B(X) = P DB(X)" is a graded braided Hopf algebra such that
n=0

m B(X)Y = X and

u %(X)(l) coincides with the space of all primitive elements
PX)={xeB(X)|Ax=x®1+1®x}

m B(X)V) generates all of B(X) as an algebra.

B W. D. Nichols '78, S.L. Woronowicz '89, Lusztig '93
N. Andruskiewitsch and M. Grafa '99,
N. Andruskiewitsch and H.-J. Schneider '02, '05
N. Andruskiewitsch, |. Heckenberger, and H.-J. Schneider '08,
I. Heckenberger '06, '07, '09, '10, ...,
N. Andruskiewitsch, D Radford, and H.-J. Schneider '10,
I. Heckenberger and H.-J. Schneider '10,
I. Angiono 2008—. .., ........ ...l

m Originally, main interest in Nichols algebras: Andruskiewitsch and
Schneider’s program of classification of pointed Hopf algebras.
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Nichols algebra

m The Nichols algebra B(X):
=P B(X)(" is a graded braided Hopf algebra such that

n=0

m B(X)® = X and

m B(X)M coincides with the space of all primitive elements

PX)={xeB(X) | Ax=x®1+1®x}
B(X)®) generates all of B(X) as an algebra.

m W. D. Nichols '78, S.L. Woronowicz '89, Lusztig '93
N. Andruskiewitsch and M. Grana '99,
N. Andruskiewitsch and H.-J. Schneider '02, '05
N. Andruskiewitsch, |. Heckenberger, and H.-J. Schneider '08,
I. Heckenberger '06, '07, '09, '10, ...,
N. Andruskiewitsch, D Radford, and H.-J. Schneider '10,
I. Heckenberger and H.-J. Schneider 10,
I. Angiono 2008—. .., ...l

m Originally, main interest in Nichols algebras: Andruskiewitsch and
Schneider’s program of classification of pointed Hopf algebras.

m When is B(X) finite dimensional?
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Nichols algebra

m The Nichols algebra B(X):
X)=@P B(X)" is a graded braided Hopf algebra such that

n=0

= B(X)D = X and

m B(X)M coincides with the space of all primitive elements
PX)={xeB(X) | Ax=x®1+1®x}

m B(X)D) generates all of B(X) as an algebra.

B W. D. Nichols '78, S.L. Woronowicz '89, Lusztig '93
N. Andruskiewitsch and M. Grafa '99,
N. Andruskiewitsch and H.-J. Schneider '02, '05
N. Andruskiewitsch, |. Heckenberger, and H.-J. Schneider '08,
I. Heckenberger '06, '07, '09, '10, ...,
N. Andruskiewitsch, D Radford, and H.-J. Schneider '10,
I. Heckenberger and H.-J. Schneider '10,
I. Angiono 2008—. .., ....... ...l
m Originally, main interest in Nichols algebras: Andruskiewitsch and

Schneider’s program of classification of pointed Hopf algebras.

m When is B(X) finite dimensional?
The answer is known for diagonal braiding!
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Nichols algebras _

Examples: J

e g-deformed root systems at roots of unity (Lusztig's book).
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Nichols algebras _

Examples:
e g-deformed root systems at roots of unity (Lusztig's book). J

e And many more. J
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Nichols algebras

Examples:
e g-deformed root systems at roots of unity (Lusztig's book).

e And many more. )

Alternative description (Woronowicz):
B(X) = P X®"/ker(&,),
n=0

G, X®" - X®" total braided symmetrizer
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Nichols algebras

Examples:
e g-deformed root systems at roots of unity (Lusztig's book).

e And many more. )

Alternative description (Woronowicz):
B(X) = P X®"/ker(&,),
n=0

G, X®" - X®" total braided symmetrizer

Particular cases:

symmetric and exterior algebras of a vector space.
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Nichols algebras with diagonal braiding

BV X®X — X®X such that

Xi @ Xj = qjj Xj @ X;.
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Nichols algebras with diagonal braiding

BV X®X — X®X such that
Xi @ Xj = qjj Xj @ X;.

m Classification: Kharchenko (Lyndon words) = Heckenberger;
rederived by Angiono.
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Nichols algebras with diagonal braiding

BV X®X — X®X such that
Xi @ Xj = qjj Xj @ X;.

m Classification: Kharchenko (Lyndon words) = Heckenberger;
rederived by Angiono.
m “Braiding matrix” (gjj);
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Nichols algebras with diagonal braiding

BV X®X — X®X such that
Xi @ Xj = qjj Xj @ X;.

m Classification: Kharchenko (Lyndon words) = Heckenberger;
rederived by Angiono.

m “Braiding matrix” (g;j);

m Generalized Cartan matrix (a;)1<i j<¢ such that a;; = 2 and

ai,j 1-aj;

q;7 =qijqi or q,; =1 for each pair i # j.
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Nichols algebras with diagonal braiding

BV X®X — X®X such that
Xi @ Xj = qjj Xj @ X;.

m Classification: Kharchenko (Lyndon words) = Heckenberger;
rederived by Angiono.

“Braiding matrix” (g;j);

Generalized Cartan matrix (a;j)1<i j<¢ such that a;; = 2 and

aij

a7 = aijaji or q; 7 =1 foreach pair i#].

For any k, a Weyl reflection of the braiding matrix:

RO (qi)) = a1ja; 0 e ani
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Nichols algebras with diagonal braiding

BV X®X — X®X such that
Xi @ Xj = qjj Xj @ X;.

m Classification: Kharchenko (Lyndon words) = Heckenberger;
rederived by Angiono.

m “Braiding matrix” (g;j);
m Generalized Cartan matrix (a;)1<i j<¢ such that a;; = 2 and
ajj 1-a;; . . .
9,7 =4ijq,i or q;; "= 1 for each pair i #j.
m For any k, a Weyl reflection of the braiding matrix:

—ak,i ak,idk,j

RO (qi)) = qija; 0 a s an

m The new braiding matrix may or may not have the same generalized
Cartan matrix.
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Nichols algebras with diagonal braiding

BV X®X — X®X such that
Xi @ Xj = qjj Xj @ X;.

m Classification: Kharchenko (Lyndon words) = Heckenberger;
rederived by Angiono.

m “Braiding matrix” (g;j);
m Generalized Cartan matrix (a;)1<i j<¢ such that a;; = 2 and
ajj 1-a;; . . .
9,7 =4ijq,i or q;; "= 1 for each pair i #j.
m For any k, a Weyl reflection of the braiding matrix:

—ak,i ak,idk,j

R (g1y) = q1jg " i) dk

m The new braiding matrix may or may not have the same generalized
Cartan matrix.

Weyl groupoid orbits are actually classified.
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Nichols algebras and LogCFT

Bold conjecture in extreme form:
m Every finite-dimensional Nichols algebra with diagonal braiding
corresponds to a Logarithmic CFT.
m The representation category of the extended symmetry algebra
reralized in a LogCFT model is equivalent to the category of
Yetter—Drinfeld 95 (X)-modules. )
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Nichols algebras and LogCFT

Bold conjecture in extreme form:
m Every finite-dimensional Nichols algebra with diagonal braiding
corresponds to a Logarithmic CFT.
m The representation category of the extended symmetry algebra
reralized in a LogCFT model is equivalent to the category of
Yetter—Drinfeld 95 (X)-modules. )

Plan of the talk:
From LogCFT to Nichols algebras
and back. )

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conf



Nichols algebras and LogCFT

Bold conjecture in extreme form:
m Every finite-dimensional Nichols algebra with diagonal braiding
corresponds to a Logarithmic CFT.
m The representation category of the extended symmetry algebra
reralized in a LogCFT model is equivalent to the category of
Yetter—Drinfeld 95 (X)-modules.

Plan of the talk:
From LogCFT to Nichols algebras
and back. )

Conclusions:
m Each LogCFT is naturally mapped into a Nichols algebra.
m In simplest cases, representation categories are equivalent.
m First steps of the reconstruction Nichols — LogCFT are quite
encouraging. )

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conf



From LogCFT to Nichols algebras

m dressed/screened vertex operators

_ J J 51 (x1)55 (%) Via(0) J 51 (x3)

—00<x1<x2<0 0<x3<00
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From LogCFT to Nichols algebras

m dressed/screened vertex operators

_ J J 5i, (x1)s;, (x2) Vaa(0) f 55 (x3)

—00<x1<x2<0 0<x3<00

m and just screening operators (multiple-integration contours)

e m e — e — e —— = Jff si (21)si,(22) 533 (23),

—0<Z1<Z22<Z3<00
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From LogCFT to Nichols algebras

m dressed/screened vertex operators

=XRXRYRX
m and just screening operators (multiple-integration contours)

e e = JJJ si(z1) s, (22)si5(23),

—00< 21 <2 <73 <00
m Braided vector spaces X and Y:
basis in X: the different species of the screenings
basis in Y: the different vertex operators at 0.
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From LogCFT to Nichols algebras

m dressed/screened vertex operators

=XRXRQYR®X

m and just screening operators (multiple-integration contours)

m Braided vector spaces X and Y
basis in X: the different species of the screenings
basis in Y: the different vertex operators at 0.
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From LogCFT to Nichols algebras

m dressed/screened vertex operators

=XRXRQYR®X

m and just screening operators (multiple-integration contours)

m Braided vector spaces X and Y
basis in X: the different species of the screenings
basis in Y: the different vertex operators at 0.

Next:

Define product and coproduct of multiple crosses
= bialgebra structure

.
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From LogCFT to Nichols algebras

m dressed/screened vertex operators

=XRXRQYR®X

m and just screening operators (multiple-integration contours)

m Braided vector spaces X and Y
basis in X: the different species of the screenings
basis in Y: the different vertex operators at 0.

Next:
Define product and coproduct of multiple crosses
= bialgebra structure
Define the action and coaction of the “algebra of crosses” on
punctured lines
= bialgebra module—comodules.

.
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Coproduct and product of multiple crosses

m Coproduct A : - % % % -
TNy S e Xy e
+77%7¥+%7+7777§C%%%
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Coproduct and product of multiple crosses

m Coproduct A : - % % % -
HH KR m X R X - —
+ o — R - — = — — QX X X

meaning X®" — (P X® @ x®=1)
i=0
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Coproduct and product of multiple crosses

m Coproduct A: - % x >x - —
XX XRQ— — — = e X ®— - -
+ X — R X =+ = — = — R % X X—

meaning X®" — (P X® @ x®=1)
i=0

m Product
——— e —— =, ———%—— =
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Coproduct and product of multiple crosses

m Coproduct A: - x > % - +—
X HR— — — — F e X—R— - —
F oo X R X -+ = = = =R % X X
n X i
meaning X®" — @X®’ ® X®(n=1)
i=0
m Product
—m X = XX =

or in alternative notation

Semikhatov

(id + Wy + VU ) (X ® X ® X),
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Coproduct and product of multiple crosses

m Coproduct A: — % > % - —
A KR — — — F — %R — % — —
T oo T o m Q6 %

n
meaning X®" — @X®i ® X®(=i)
i=0

m Product
—m X — = XX =

or in alternative notation

/ /
N + + =(1d+ V¥ + V¥ ) (X R®X® X),
/

The Nichols algebra B(X) is whatever is generated by single crosses.
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Antipode § : B(X) = B0

The antipode acts by half-twist,
e.g., S5 X® - X®5 s
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Antipode $ : B(X) — B(X) s

The antipode acts by half-twist,
e.g., S5 X® - X®5 s

85 = —
Al
/
/
/
All braided Hopf algebra axioms are satisfied. J
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of B(X) are spanned by J
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of B(X) are spanned by J
$B(X) action and coaction:
m left action — - - % - —-—- . —o0——x—— s
X ® o X X o X X o X X

/ ?
o - +
AL

= (1d+ Uy + w2W1)(X® Y®X)7

~ x

o
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of B(X) are spanned by J
$B(X) action and coaction:
m left action — - - % - —-—- . —o0——x—— s
X ® o X X o X X o X X

/ ?
o - +
AL

m right action similarly

= (1d+ Uy + w2W1)(X® Y®X)7

~ x

o
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of B(X) are spanned by

B(X) action and coaction:

m left action — — — % ——— . —o—x—— is

X ® o X X o X X o X X

N + + J =(id+ WV + VLU )(XQ Y ®X),
A

m right action similarly

m left action: again by deconcatenation

Ol 1 —X—%0—x > Ty KON - — e ——y o

+—%+—x o—%
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of B(X) are spanned by J
B(X) action and coaction:
m left action — - - % - —-—- . —o0——x—— s
X ® o X X o X X o X X o X
/ /
— + + ( J =(id+ V; + VLU ) (X ® Y ® X),
/ /

m right action similarly

m left action: again by deconcatenation

Ol —X—%0—% > — — — —@H%%0% + — — X% — —Q —X%—0—%

+ — o x —Q O—%

v
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The Nichols algebra of screenings: (co)modules

Hopf bimodules of B(X) are spanned by J
B(X) action and coaction:
m left action — - - % - —-—- . —o0——x—— s
X ® o X X o X X o X X o X
/ /
— + + ( J =(id+ V; + VLU ) (X ® Y ® X),
/ /

m right action similarly

m left action: again by deconcatenation

Ol —X—%0—% > — — — —@H%%0% + — — X% — —Q —X%—0—%

+ — o x —Q O—%

m right coaction: similarly.

v
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Yetter—Drinfeld 25 (X)-modules

Left—left Yetter—Drinfeld modules are right coinvariants in Hopf bimodules:J
just o—
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Yetter—Drinfeld 25 (X)-modules

Left—left Yetter—Drinfeld modules are right coinvariants in Hopf bimodules:J

just o—

They carry the left adjoint action

|

Semikhatov
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Yetter—Drinfeld 25 (X)-modules

just o—

Left—left Yetter—Drinfeld modules are right coinvariants in Hopf bimodules:J

They carry the left adjoint action

|

Graphic notation:

YA APk

product coproduct left action left coaction right action right coaction
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Yetter—Drinfeld 25 (X)-modules

Left—left Yetter—Drinfeld modules are right coinvariants in Hopf bimodules:J
just o—

They carry the left adjoint action and satisfy the axiom

) )

Graphic notation:

YA APk

product coproduct left action left coaction right action right coaction
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Yetter—Drinfeld 25 (X)-modules

More general Yetter—Drinfeld 98 (X)-modules:

—multivertex modules, e.g.,

O— or O—

XQYRIXBRY XQYRIXRQYRIXRQY
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Yetter—Drinfeld 25 (X)-modules

Summary:
Given a braided vector space X (“screenings”), we define
the Nichols algebra 9B (X),
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Yetter—Drinfeld 25 (X)-modules

Summary:
Given a braided vector space X (“screenings”) and another braided vector
space Y (“vertex operators”), we define

the Nichols algebra B(X),

a category of Yetter-Drinfeld B (X)-modules.
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~ Rank-1 Nichols algebra 5,

Primitive root of unity q = e%, p=2.

A—
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Rank-1 Nichols algebra 5,
Primitive root of unity q = e%, p=2.
B, is linearly spanned by

F(r)= — % — % - - (r crosses), 0<r<p-—1,

with braiding W(F(r)® F(s)) = q**F(s) ® F(r).
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Rank-1 Nichols algebra 5,
Primitive root of unity q = e%, p=2.

B, is linearly spanned by

F(r)= — > — % = - (r crosses), 0<r<p-—1,
with braiding W(F(r)® F(s)) = q**F(s) ® F(r).
Product:

F(r)F(s) = <’J;5>F(r +s),
1

where () = ﬁ, t ={1)..dry, {ry= 22’__1.
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Rank-1 Nichols algebra 5,
Primitive root of unity q = e%, p=2.

B, is linearly spanned by

F(r)= — > — % = - (r crosses), 0<r<p-—1,
with braiding W(F(r)® F(s)) = q**F(s) ® F(r).
Product:

F(r)F(s) = <’J;5>F(r +s),
n_ ot _ -
where (7 = 72 (D) =Dy (D= o

Coproduct:

by deconcatenation.
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Rank-1 Nichols algebra 5,

B, is linearly spanned by

F(r)= — > — % > - (r crosses), 0<r<p-1,
with braiding V(F(r)® F(s)) = quSF(s) ® F(r). )
Product:
F(r)F(s) = {"T°)F(r+s),

Where<> S (= =T

Coproduct:

by deconcatenation.

Vertices:

V@ with braiding W(V?® V) = g2 Vb ® V2.
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Rank-1 Nichols algebra 5,

B, is linearly spanned by

F(r)= — > — % > - (r crosses), 0<r<p-1,
with braiding W(F(r)® F(s)) = q**F(s) ® F(r). )
Product:
F(r)F(s) = {"T°)F(r+s),

where < )= <s>|<:>'_ ST (Il =)...{r), ()= ‘(’;

Coproduct:

by deconcatenation.

Vertices:

V@ with braiding W(V?® V) = q% Vb ® V2.

Then category equivalence follows, 1109.5919

Yetter—Drinfeld B ,-modules <= modules of the triplet algebra W,.

o
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From Nichols algebras to LogCFTs

Diagonal braiding, x; ® x; — q;j x; @ xj, 1 < i,j < 0. J
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From Nichols algebras to LogCFTs

Diagonal braiding, x; ® x; — q;j x; @ xj, 1 < i,j < 0. ]

1. Construct screenings in 6-boson representation:
e _ Q.o iTaj.o
I-'J_Faj—§el with ™% = q; ;,
Qiroy.q; .
e~ = qiqik, Kk #J,

and find the Virasoro algebra  T¢(z) = 20(2).0¢(2) + £.0%p(2)
such that the F; indeed have dimension 1.
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From Nichols algebras to LogCFTs

Diagonal braiding, x; ® x; — q;j x; @ xj, 1 < i,j < 0. ]

1. Construct screenings in 6-boson representation:
e _ Q.o iTaj.o
I-'J_Faj—ﬁef with ™% = q; ;,
Qiroy.q; .
e~ = qiqik, Kk #J,

and find the Virasoro algebra  T¢(z) = 20(2).0¢(2) + £.0%p(2)
such that the F; indeed have dimension 1.

2. Recall the generalized Cartan matrix (a;)1<ij<o»
with aji = 2 and

aj j 1-a
q;; = 9ijqj,i Or q; ;

i

J =1 for each pair i # j,
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From Nichols algebras to LogCFTs

Diagonal braiding, x; ® x; — q;j x; @ xj, 1 < i,j < 0. J

1. Construct screenings in 6-boson representation:
e _ Q.o iTaj.o
FJ_Faj—%e/ with ™% = q; ;,
Qiroy.q; .
e~ = qiqik, Kk #J,

and find the Virasoro algebra  T¢(z) = 20(2).0¢(2) + £.0%p(2)
such that the F; indeed have dimension 1.

2. Recall the generalized Cartan matrix (a;)1<ij<o»
with aji = 2 and

aij 1-a
qii = 4ijqj,i or q;

3. Impose conditions on scalar products:

i

J =1 for each pair i # |,

aj joj.aj = 204,'.(11' or (1 — a,-yj)a,'.oz; =2
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From Nichols algebras to LogCFTs

Diagonal braiding, x; ® x; — q;j x; @ xj, 1 < i,j < 0. J

1. Construct screenings in 6-boson representation:
e _ Q.o iTaj.o
I-'J_Faj—ﬁef with ™% = q; ;,
Qiroy.q; .
e~ = qiqik, Kk #J,

and find the Virasoro algebra  T¢(z) = 20(2).0¢(2) + £.0%p(2)
such that the F; indeed have dimension 1.

2. Recall the generalized Cartan matrix (a;)1<ij<o»
with aji = 2 and
a,',j 1—a
q;; = 9ij9j,i or q;;

3. Impose conditions on scalar products:

i

J =1 for each pair i # j,

aj jaj.qj = 204;.04_,' or (1 — a;J)a;.a; =2

= Virasoro central charge is invariant under Weyl groupoid action

—ak,i _ak,idk,j

DC{(k)(qw) = qi,jq,'j:kyjqk,j Ay k
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m A list of 20+ entries (Heckenberger)

v
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m A list of 20+ entries (Heckenberger)
m Item 2.1 (Cartan type Ay):

q12921922 = 1, q11912921 = 1,  q12G01 is a pth root of unity.
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m A list of 20+ entries (Heckenberger)
m Item 2.1 (Cartan type Ay):
q12G21G22 = 1, q11G12G21 = 1, q12G01 is a pth root of unity.

m Conditions for the momenta of two screenings:
2.5+ 5.6 =2m (meZ),

a.a+2a.f=2n (nel), 2a.ﬁ:—%+2j, | =2 (jez)
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m ltem 2.1 (Cartan type Az):
q12G21922 = 1, q11912921 = 1, q12G01 is a pth root of unity.

m Conditions for the momenta of two screenings:
2.6+ 5.8 =2m (meZ),

a.a+2a.6=2n (neZ), 2aﬂ=—%+2j, p|=2 (jez)

m The braiding matrix:

T (et
e r — e »r
(ql,J) - <(—1)jeiP ez,‘TW )
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m Conditions for the momenta of two screenings:
2.6+ 5.6 =2m (meZ),

a.a + 2.6 =2n (neZ), 2a.ﬁ=—%+2j, lp| =2 (jeZ)

m The braiding matrix:
2im . in
er —1)e >
(ai)) = S, e
(=1ye > er
m Let |p| = 3 <= none of the screenings is fermionic.
Then necessarily m = n = 0 and the Virasoro central charge is

. 24 1
c=50—- =3 24(k +3), where k +3 = - — j.
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m Conditions for the momenta of two screenings:
2.6+ 5.6 =2m (meZ),

a.a + 2.6 =2n (neZ), 2a.ﬂ:—%+2j, lp| =2 (jeZ)

m The braiding matrix:
2im . in
er —1)e 7
(9iy) = . _im ( )ZJ
(=1ye > er
m Let |p| = 3 <= none of the screenings is fermionic.
Then necessarily m = n = 0 and the Virasoro central charge is

c-50—k—+3—24(k+3) where k+3—f—1

The Wj field is 3
W3 = a@aa(paawa + Ea@a&)paa@ﬂ - 7630&6()066906 - a@ﬁa@,@&pﬁ
9ap—1) » 9(p—1) 20 (P D 9(p—1) »
—Tﬁ goaagoa—T& a0 gt ——F——— 0% 6 ©Oa+ 2p 0 QO[}&QDQ

9(P—1)
T Ppa -

9(p—1)? 3
4p2 a 905
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m The braiding matrix:
2im . iT
N er  (=1)Ye »
(gi5) ((—1)je_';r e’
m Let |p| = 3 <= none of the screenings is fermionic.
Then necessarlly m = n = 0 and the Virasoro central charge is
c=50— — 24(k +3), where k +3 = £ —j.
= Presentatlon of the Nichols algebra:
B(X) = T(X)/([F1, F1, F2l, [F1, P2, 2], FY, [F1, F2)P, FD)
with Virasoro dimensions 3, 3, 2p—1, 3p—2, 2p—1.
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

m The braiding matrix: _
o e’ C(-1pe
(4i) ((1)1.9—’5 e
m Let |p| = 3 <= none of the screenings is fermionic.
Then necessarlly m = n = 0 and the Virasoro central charge is
c=50— — 24(k +3), where k +3 = - — .

] Presentatlon of the Nichols algebra:
B(X) = T(X)/([Fl, Fi, B, [F1, P2, F2), FP, [F1, F2)P, F2p)
with Virasoro dimensions 3, 3, 2p—1, 3p—2, 2p—1.
m The highest dimension 3p — 2 is that of the “seed” field for a
multiplet algebra.
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Nichols algebras — LogCFT beyond Virasoro. Rank 2

The braiding matrix:
N e’ (= 1) € %
(qI’J) ((1)1'6_’: e p
Let |p| = 3 <= none of the screenings is fermionic.
Then necessarily m = n = 0 and the Virasoro central charge is
c=50— — 24(k +3), where k +3 = - — .

Presentatlon of the Nichols algebra:

%(X) = T(X)/([F17 Fi, F2]7 [F17 Fa, FQ]? Flp’ [F17 FQ]pv F2p)
with Virasoro dimensions 3, 3, 2p—1, 3p—2, 2p—1.
The highest dimension 3p — 2 is that of the “seed” field for a
multiplet algebra.

Elements F{ and F} indicate the “positions” of long screenings

Ea = fﬁepa'“’, &g = %epd@

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conf



Nichols algebras — LogCFT beyond Virasoro. Rank 2

m The braiding matrix:
e (—1)1'@_%r

(—1)fe_%r e

m Let |p| > 3 <= none of the screenings is fermionic.
Then necessarily m = n = 0 and the Virasoro central charge is
=50 — 2% —24(k +3), where k +3 =1 —j.

m Presentation of the Nichols algebra:
B(X) = T(X)/([F1, F1, F2], [F1, Fo, F2], Ff, [F1, FalP, FD)
with Virasoro dimensions 3, 3, 2p—1, 3p—2, 2p—1.
m The highest dimension 3p — 2 is that of the “seed” field for a
multiplet algebra.
m Elements F{’ and F} indicate the “positions” of long screenings

&y = §e—m-s0’ Eﬁ — J;e—pﬁ-so

They produce an octuplet structure similar to Gaberdiel-Kausch's
triplet structure.

(qij) =

V.
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The octuplet algebra

W(z) = elPe+PB)(2) is a Wa-primary with conformal dimension 3p — 2.

W(z)
Walz) | Ws(2)
o " \ / B o
0” Waa(z) Was(z) o
Ea \/v\/ &g
e—’//s: \E\\‘—~>
Waga(2) ’ Wsas(2)
8&,.""‘.. K / Sﬂ
0 - Waagg(z) - 0
Ea L&
0” ~o
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The octuplet algebra

Other elements of the ideal are also hidden here.

- €5 B
Ea \ = T s

0” Wsa(2) 0
Ea \/v\/ &g
<~——" /8: \a\ ==
Waga(2) ’ Wsas(2)
Sa,.""‘.. X / 85
0 - Waagg(z) - 0
gy s
0” ~o
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The octuplet algebra

A “logarithmic” extension of the /5 algebra

Wal(z2) Ws(z)
. 5%}
Ea \ v %
0” Wsa(z) Was(z) o
Ea \/\(\/ ¥}
-~ T ——s
Waga(2) ’ Weas(2)
a \ Ea €p
0 “ Waagg(z) - 0
b s
0” 0

Semikhatov Braided Hopf Algebras as the Framework for Logarithmic Conf



The octuplet algebra

A “logarithmic” extension of the V3 algebra, whose representation
category is conjecturally equivalent to the category of Yetter—Drinfeld

B(X) modules. W(z)
/ \
Wae) Ws (2)

0” Woa(z) Was(z) o

Ea \/v\/ 5]

e—’//g: \g\\‘—s-

Wagpa(2) ? Wsas(2)
Sa._.--”'.. \ / 85
0 “ ngg(z) - 0
Ea &
0” ~o
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m Each LogCFT is naturally mapped into a Nichols algebra.
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.
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m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.
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Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
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How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;}j@).

The space of torus amplitudes
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.
How much of the LogCFT content can be extracted from Nichols algebras:
EH The spectrum of primary fields (simples in %(X)HD)

The space of torus amplitudes (center of = » X)HD)
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;}j@).
The space of torus amplitudes (center of ggg‘é@).

Projective module structure
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;}j@).
The space of torus amplitudes (center of ig?‘é@)

Projective module structure (projectives in 2 %(X ’5@)
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;}j@).
The space of torus amplitudes (center of ggg‘é@).

— Lo oB(x
Projective module structure (projectives in %Exg‘dD).
Modular transformations of characters and pseudocharacters
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;}j@).
The space of torus amplitudes (center of ggg‘é@).

Projective module structure (projectives in gg;g‘d@).
Modular transformations of characters and pseudocharacters
(Lyubashenko's mapping class group action).
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;‘j@).
The space of torus amplitudes (center of ggg‘é@).
Projective module structure (projectives in gg;g‘j@).

Modular transformations of characters and pseudocharacters
(Lyubashenko's mapping class group action).

Fusion
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Conclusions:

m Each LogCFT is naturally mapped into a Nichols algebra.

m In the simplest cases studied, the representation categories are
equivalent.

m First steps of the reconstruction Nichols — LogCFT are quite
encouraging.

Realistic (or semi-realistic) prospects.

How much of the LogCFT content can be extracted from Nichols algebras:
The spectrum of primary fields (simples in gg;‘j@).
The space of torus amplitudes (center of ggg‘é@).
Projective module structure (projectives in gg;g‘j@).

Modular transformations of characters and pseudocharacters
(Lyubashenko's mapping class group action).

Fusion (monoidal structure of gg;;y@).
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Thank you.
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