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Smooth Heterotic Compactifications

® 5U(4) Heterotic Standard Models

D =10, gun, A5, Es

N

X. D=6
O “slope” stable
R4 W ,F = Zs3 X Zs3
e H' (V)Y | = matter
N =15USY :
H' (V| = conjugate matter

HY (AN*V)Y| = Higgs
HY(V @ VY| = Bundle Moduli

R* Theory Gauge Group:

Eg — Spin(10)




Choose the 7Zs x Z-: Wilson lines to be Braun, He, Ovrut, Pantev

_ _iYy 2& / _ iYp_p 4
Xy = ¢€ oy XB-L — € N

where

= gauged
!
F =173 xZ3z= Spin(10) — SUB)c x SU(2), x U(1)y xU(1)p_1,

R* Theory Spectrum:

n. = (K (X,Ur(V)) ® R)**% = 3 families of quarks/leptons

Vp — (1, 1, O, 3)

and | pair of Higgs-Higgs conjugate fields

H=(1,2,3,0), H=(1,2,-3,0)
Under SU(B)C X SU(Q)L X U(].)y X U(l)B_L.




No further vector-like pairs or exotics.

That is, we get exactly the matter spectrum of the MSSM

with 3 right-handed neutrinos! In addition, there are
ny = hH (X, V < Vrets — 13 vector bundle moduli

Denote this low energy theory as a B-L. MSSM.

However-

Tr(YyYB—_r1)so10) 70 = initial U(1)y Up_1, operator mixing

Tr(YyYe_1)s¢:0101 70 = U(1)yUp_; mixing evolves with scale

Greatly complicates the RG and low energy analysis!




Question: Are there other inequivalent choices of Wilson lines
leading to a B-L MSSM with no U(1)U(I) kinetic mixing?

s0(10) Dykin Diagram -

ag | su(2)r

su(3)o | O
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First, find the most general element of the Cartan subalgebra
h C 50(10) that commutes with o', a*, 3,a*. The result is

= the elements of s0(10) that commute with su(3)c & su(2)r

form a two-dimensional subspace hags C h. Any basis is of
potential interest.




However,
Hy+Ho+Hs, Hy+ Hs

arise “naturally”.We call this the “

properties. One can identify

Yp_p =

YTS R

Now choose the Z; x Z5; Wilson lines to be

: 2m : 2
XTSR p— QZYTSR 3 ) XB_L p— QZYB_L 3

Note that

X%SR = Xp_r =1

=

" and explore its

Spin(l()) — SU3)c x SU(2) L X Ul)p,, xU(1)p_r




Canonical Spectrum:

The Spin(10) spectrum is determined from H'(X, Ur(V)).

For i = 16
HY(X,V) = RG%
where

RC=18x1® 2D XD X3S Xx1x2D Xix2 ® X153 © X3 X3

and X1 = XTur> X2 = XB-L- Note that

= |6 representations. The action of the Wilson lines on

each 16 is

16 = X‘%bn ' X%—L(ga 1,-1, _1) D XT3g x\%—ld(gf 1,1, —1)
®1-xp-(3,2,0,1)®1-1(1,2,0,-3) & x7,, - 1(1,1,-1,3)

BXryp - 1(1,1,1,3) .

Then (H'(X,V) ® 16)*3*% consists of 3 families of quarks/leptons




each transforming as
1 -1 1 _

fr T _ — - — — c—— - —_— ——

Q_(UTD) (372.’033)7 u (371.’ 2.’ 3)’ d (371727 )

1 1
L=(N,E)" =(1,2,0,-1), v=(1,1, —5 1), e=(1,1, > 1)

under SU(3)c x SU(2), x U(1)z,, x U(1)p_1.
For 1 = 10
h (X, N°V) =4
= 4 |0 representations. We find that (H'(X,A\*V) ® 10)%s*%

has| pair of Higgs-Higgs conjugate fields

1 -~ 1
H — (1,2,570), H - (1,2,—5,0)

That is,

e When the two Wilson lines corresponding to the canonical basis are turned
on simultaneously, the resulting low energy spectrum is precisely that of the
MSSM-that is, three families of quark/lepton chiral superfields, each fam-
ily with a right-handed neutrino supermultiplet, and one pair of Higgs-Higgs
conjugate chiral multiplets. There are no vector-like pairs or exotic particles.




Note in the above analysis that each quark/lepton and Higgs

arises from a different 16 or 10 of Spin(10).

Canonical Kinetic Mixing;

For arbitrary (1), x U(1), l
L (FL)? + 2aFL P 4 (F2) + ..

. b

For U(1)r,, xU(1)p—1, (H;|H;) =0, = the “Killing” bracket

Lkr‘netie -

(YT3R‘YB—L) =0 = TT(YTgRYB—L)so(lo) =0 = no initial mixing

e Since the generators of the canonical basis are Killing orthogonal in so(10),
the value of the kinetic field strength miring parameter a must vanish at the
unification scale. That is, a(M,) = 0.




For arbitrary (1), x U(1),

| |

_1((]::1/)2 + QQ-F“I,,FQ"” + (F,'f,,):’ +...)

ﬁkinet-ic -
with covariant derivative
D=0- ‘iTlglAl — 'inggAQ

Redefining the gauge fields by rotation and rescaling one finds

|

1
Ekinetz’c — _Z((fplw)2) + (FiV)2>

with the covariant derivative in the “upper triangular” form

D=0—i(T".T? (%1 %’f)’) (jl)

_ _ % I
Gi=0q1, G m Gm m




That is, kinetic mixing reappears as an off-diagonal ¢,/ in the
covariant derivative. Note that

a—0 =  Gy—g2. Gy —0

The RGE for is

dG _ 1 3
dt 16m2 M
where
Bar = G3Gr Bao + Gay Bii + 2G1Ga B1y + 2G2G3y Bia + G1Go Bio
and

Bi; = TT(TiTj)s@zeBl@l

Assuming G,; =0 at the initial scale, it can only “regrow” from

from the last term. = kinetic mixing will vanish at all scales iff

TT(TlTQ)S@Z@l@l =0

For generic U(1); x U(1)s this is the case.




However, for the canonical basis

Tr(Yr,,YB—1)16 =0
Furthermore,

Yrplug = 1)1 ® (=1)1a  [Yp_r]pg = (0)12& (0)1,
=
Tr(Yyv,.Ye—1)gg =0
Conclusion:

e The generators of the canonical basis are such that Tr(T*T?) = 0 when the
trace is performed over the matter and Higgs spectrum of the MSSM. This
gquarantees that if the original kinetic miring parameter vanishes, then a and,
hence, Gyy will remain zero under the RG at any scale. This property of not

having kinetic mizing greatly simplifies the renormalization group analysis of
the SU(3)c x SU(2), x U(1)p,, x U(1)p—1, low energy theory.

What about non-canonical bases? We can prove a theorem that

e The only basis of hage C b for which U(1)y, x U(1)y, kinetic miring van-
ishes at all values of energy-momentum is the canonical basis Yr,,, Yp_1, and
appropriate multiples of this basis.




Sequential Wilson Line Breaking

m1(X/(Z3 x Zs)) = Z3 x Zs = 2 independent classes of
non-contractible curves. = each Wilson line has a mass scale
x "' of the curve it “wraps”. Denote these by

Three possibilities: M, ~M,, ,, M, , > M. or

My, > My, .. First consider

My, ., >M

XT3p °

Recall Yp_ 1 = . In addition to

su(3)c @ su(2)r this commutes with «s and, hence, su(2)r .
=
szn(l()) — SU(S)C X SU(Z)LX SU(Q)R X U(l)B_L

Gauge group of the model. At AM; = M,
XTsr turns on and breaks




Second, consider

M > M

XT3R XB—L *

1 ..
Recall Yr,,, = /., + Hy = 2(V — 5(B — L)) = 2755 .In addition to
su(3)c @ su(2)r, this commutes with

(80)) Q

Q4

Spin(10) — SU(4)cxSU((2)r x U(1)7,,
Gauge group of the model. At M, = M

XB-—L

xB—1. turns on and breaks S0/(4). — SU(3)c < U(1) 1.

In each case, can compute the exact zero-mode spectrum in
the intermediate region.




Spin(10)

My,
XTzp XTp_p,
SU(4)¢ x SU(2)L x U(1)1y, SU(3)c x SU(2)L x SU(2)r x U(1)p—1L
— =~
( (g ) = (4,2,0) (L= (1,2,1,-1)
= LR=(1:1$211)
16—(U)=(41——)>x9 16—Q=(321%) x9
( ¢ ) =@ L9 =(31,2,73)
— - H=(1,2,2,0) } %2
7 8 ;’2) x2 10 4 He =(3,1,1,2)
_FIC' s (:?? 17 l$ _%)
My, , =M
XT ﬂ:[ ’ o = 111
- y XTar !
SU(3)c x SU(2), x U(1)rypy x U(1)B—
L =(1,2,0,—1) B
€= (1:17%71)
v=(1,1,-3,1) MSSM
16 — s — x3
=(3,2,0,) ) -
u=(3,1,-3,-3) 3 right-handed neutrino
| d=(3,1, l %) y supermultiplets
10 = (1,2, 2,0)
= (1’2,—5:0)

The two sequential Wilson line breaking patterns of Spin(10).




The 27/B-L Breaking Scale
At a scale VM, < M; must spontaneously break
Uy, x U(1)p— — U(1)y
Since in the canonical basis = the U(1),, xU(1)5_;

covariant derivative is

_ ey 3 9 @ ”OI
D = 0—i (} — %(B — L), \/;(B - L)) ( ?)R 9131,) (BBiL)

The potential for a right-handed sneutrino 7 is approximately

V =m3|o* + g(glgL + g3p)|P|*
/ 3 :
where g;, = \@gm and is the soft SJSY parameter.
RG scaling =

—8m
95L + Gk

—4m,,(0) w

Up =




In the canonical basis, implies we can solve the
sneutrino soft breaking mass RGEs analytically. For example,

in the “left-right” model

ad . . 5 3 .
2 2 2 . 2 0.2 . 2 2 2
167 _lt m,, = —BQB_Ll."‘I[}_Ll - Zgl:{gIJ‘IIGRI + _4gB—LSB—L — glsRSI:{I

5 d .
167‘(2553_14 = 129;3_LSI3—L

167.-’2%8,;: = 14g";§S,§z

Taking A7, , = 200 GeV and all soft masses universal except the
first and second family sneutrinos =

40000 my 2 (0) =200 GeV (universal)
=500 GeV
=550 GeV

1 —mZ, (0) = (200 GeV)*

=700 GeV

1 GeV?




M, Quy
left —right or Pati — Salam

My
B—L MSSM
Mp_r,
MSSM
Msu sy
SM

Mew ap = 0.017, s = 0.034, az=0.118




Example: Taking the “left-right” model, choosing
Msysy =1TeV, Mpg_; =1TeV
and enforcing gauge unification, we find
M, = 3.0 x 10 GeV, M;=3.7x 10" GeV
ay = 0.046, asp(Mp_1)=0.0171, apr(Mpg_r) = 0.0180
The running gauge parameters are

200
15.0 15.5 16.0 16.5 17.00

4 6 8 10 12 14 16

| ¢
() ¥y —
*"’( I GeV]

® One-loop RGE running of the inverse gauge couplings, a; l'in the

case of the left-right model with Mg_; = 1 TeV with an enlarged image of the
intermediate region.
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Squark & Slepton
Gauginos & Higgsinos

10 12 15 20
B

tanp=12
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Figure D: Plot (a) shows the c,(0)-tan 3 plane corresponding to point (B) in Figure 2 with the

phenomenologically allowed region indicated in dark brown. The mass spectrum at (Q) was presented in

Table 3. A plot of the hierarchy Mp_1, /My over the allowed region is given in (b). Graph (c) shows the

hierarchy as a function of ¢, (0) along the tan 8 = 12 line passing through (Q).

Particle | Symbol | Mass [GeV] | Particle Symbol Mass [GeV]
Q12 850 h° 127
f1.2,b 775, 953 : H° 382
Squarks | 122712 ) Higgs
bV B | 670, 915 A0 381
i), 1% | 456, 737 H* 390
L1,2 1255 IV{) 97
~ 0
Sleptons i (gl% @ . Neutralinos Ny 189
#U D1 1217, 1246 Ng 499
Charginos | Y=, Y= | 190,510 N} 509
Gluinos q 712 V4 Ap_r,Ap_r | 1314,1348

Table 3: The predicted spectrum at point (Q) in Figure 3. The tilde denotes the superpartner of the

respective particle. The superpartners of left-handed fields are depicted by an upper case label whereas

the lower case is used for right-handed fields. The mixing between the third family left- and right-handed

scalar fields is incorporated.
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