Spectral Redistribution of Gyroresonant Photons and
Cyclotron Line Formation in Magnetized Atmospheres of
Compact Stars

E. V. Derishev, M. A. Garasyov, V. V. Kocharovsky,
VI. V. Kocharovsky

Institute of Applied Physics, Nizhny Novgorod

Ginzburg Conference on Physics

VI. Kocharovsky (IAP RAS) May 28, 2012 1/30



Atmospheres of compact stars

e Radii: Rwp ~ 10% km, Ryg ~ 10 km.
Scale heights: Hxg ~ 1 — 10cm, Hywp ~ 10 — 10% cm.

@ Strong magnetic fields:

Bxg ~ 107 — 101G, Bwp ~ 10° — 10°G.

Photospheric number densities:

Nxg ~ 10Y%em ™3, Myp ~ 10%cm 3.

Photospheric temperatures:
Tns ~ 50 — 10006V, Tywp ~ 1 — 5eV.
@ Strong domination of scattering over absorption in the outer layers:
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Cyclotron lines observations for compact stars

Is spectral redistribution important in 1D case?
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Spectral redistribution is important for the line formation in atmospheres of

main-sequence stars (3D case) [Mihalas, 1980].

VI. Kocharovsky (IAP RAS)

May 28, 2012

3 /30



Approximations

o Rarified plasma: [n; o — 1| < 1.
@ All electrons on the ground Landau level.

@ Isothermal atmosphere with constant temperature T, which
corresponds to the Maxwellian distribution of electrons over
longitudinal (with respect to the magnetic field) velocities

(0= (3or) oo (). )

where 5 = v/c is the dimensionless longitudinal velocity,
Bt = (T/(mc?))!/? the thermal velocity.

@ Plane-parallel atmosphere:

2kT

mpg

H < R.
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Spectral redistribution of radiation
A photon with a given frequency w and propagation angle 6 with respect to
magnetic field is scattered resonantly by electrons whose longitudinal
velocities are 5:

W'(1—Bcost) =w(l— Bcosh).
The cross section of this process is [Wang, Wasserman, Salpeter, 1980]
3 v or(1 + cos? )

" 87wp [1 — fBcost — %WT—F (%)2’

where wg = eB/(mc) is the cyclotron frequency, o1 — Thomson
scattering cross section, v = 2e2w3 /(3mc?) — radiative cyclotron line
width, sc = hwg/(2mc?) — recoil parameter (typically s < 37).

The probability to scatter on the electrons with velocity in the interval (5,

B+dp)is

Osc

(2)

2
P(B) ~ f(B)oscdB, A~ |cosf|exp (2%2 ) )
T
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Resonance condition. Nonrelativistic

approximation. Quasicoherent scattering
(Zheleznykov, Litvinchuk, 1987)

w(l — B cosh) = wg.
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Mildly relativistic approximation
52
w(l —pBcosh+ —) = wg.

2
Two resonance velocities:

Pr2 =cosf + \/c05202 (1 - ‘*’73).
w



Escape due to "relativistic jumps”
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The probability to increase the mean free path of a photon in g times due
to relativistic jumps
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Finite line width effects

Conservation laws for the scattering event
w(l — Bcosh) = w'(1 — Bcosh).

Resonance conditions before and after the scattering event
w(l—pPrcoshd+L) = wpg, (3)

w’(l—BXc059'+7x) = wg. (4)

Resonance velocities (5 after the scattering

p2 , (1— Beost’) B\ _
?—,ﬁxcose +|:l—m 1—51cos€+7 =0. (5)

If |cos@'| > 3 then

cos cos
<~ )
osg <~ 1In(BT/7) By
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Escape from the cyclotron line core
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The probability of escape from the plasma slab with optical depth =200 in one
scattering, T = 1keV, y/wp = 107,
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Photon escape probabilities in a single scattering versus optical depth: the
solid, dashed, and dash-dotted lines indicate the total escape probability
Ps, the escape probability due to relativistic jumps Pjymp , and the escape
probability related to the finite natural line width P., respectively. The
parameters 37 = 0.02 and ~/wg = 107°.
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10'

Dynamics of the smearing of the photon delta distribution N (0) = Nyd(r) over the optical depths as a function of the
number of scatterings. The solid thick and thin lines correspond to the distributions after 100 and 1000 scatterings for the
case where the efiects leading to the escape of photons from the resonance line were taken into account. The dashed lines
correspond Lo quasi-coherent scattering. The parameters 8r = 0.05 and 4/wp = 1078,




Semiinfinite atmosphere with absorption

Relative fraction of photons emitted at optical
depth 7 in the emergent spectra. Solid line —
with redistirbution effects; dashed — without
(quasicoherent scattering). Atmospheric
parameters: T = 50eV, v/wg = 1079,

3 Pabs/Pse(r =1) =107°.
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Semiinfinite atmosphere with absorption
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Quasicoherent approximation works well only to the left from the solid line.
Redistribution effects become important in the right zone. Dots represent

some known white dwarfs and neutron stars.
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Conclusions related to the spectral redistribution

Statistically, the redistribution of photons out of the cyclotron line results
in a boosted probability of their escape from a large optical depth. As our
simulations show, the emerging radiation is gathered over a large interval of
optical depths, spanning one or two orders of magnitude. Potentially, this
causes all sorts of inhomogeneities to show up in the resulting spectrum in
a more pronounced way, and the radiation transfer equation in these
situations should be solved over a range of optical depths sufficiently large
to capture the origin of the major part of outgoing photons.
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Cyclotron wind in the atmospheres of compact stars
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Radiation transfer in the atmospheres of compact stars

Polar jets
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FIG. 1. Model of radiative discon.
Observational appearence:

The model of radiation diskon

[Zheleznyakov, Bespalov 1990]

@ Hot magnetic white dwarf or
neutron star

@ Cyclotron wind from the
photosphere due to cyclotron
radiation pressure

@ Extended plasma envelope

@ Polar jets along the magnetic axis

@ Wide and deep depression band in spectra

@ Bipolar plasma outfow

@ Quasiperiodic oscillations of radiation flux
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Vacuum polarisation

Dielectric and magnetic permittivities

v B;B
61(-kaC) = 5ik(1 — 23) + 73_B2k7

“1(v B;B
Mikl( ac)  _ k(1 —2a) — 4aB_2k’

also it is assumed that a << 1, where

1 2/ B\?
a= 45_7r% <B_) , B, = m2c3/he ~4.4.103G.
cr
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Dielectric permittivity of mildly relativistic plasma
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Normal waves. Influence of vacuum polarization

Dependence of opacity coefficients Imn; 5 on electron number density. Left figure
is for w = 0.96wp, cosf = 0.5, B = 2.56 x 101G, T = 1keV, right one is for

w = 1.0dwpg,cosf = 0.5,B =2.56 - 101G, T =1 keV. Solid lines — solution
with vacuum polarization, dashed — pure plasma without vacuum polarization.
Top curves reffers for the extraordinary waves, bottom for the ordinary ones.
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Opacity coefficients

Puc.: Spectral dependence of opacity coefficients Imn; »: (a) — extraordinary
wave, (b) — ordinary wave. Right figure corresponds to

Ne = 10¥cm=3, cos§ = 0.05, B = 2.56 - 101G, T = 1keV, left figure
corresponds to N, = 10°1ecm™3,cos = 0.05, B = 2.56 - 101G, T = 1keV. Solid
lines show calculations with relativistic effects included, dashed without
(quasicoherent approximation).
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Transfer equations. General view

The intensity vector J:

I+ Q

1| 1-Q

=31 v | (7)
2V

The evolution of intensity vector is described by transfer equations:

dJ

7:_M'J+sem+ssc> (8)

ds
where s is the coordinate along the ray. Source functions Sep and Sg.
describe emission of plasma and rescattering respectively. M is the transfer
matrix, which describes absorption, scattering and evolution of polarization.
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The transfer matrix for mildly relativistic plasma

2Im 11 0 Imgpo —Re¢o
M — 1+¢ 0 2Im ¢pp —Imgyo —Reqo 9)
T —2Imgi,  2Imgo  Im(s1 +<2) Re(sin —s2) |

—2Resi2 —2Reciz Re(s —<11) Im (i1 + o2)

qii = Ex+2a,
12 = —<u1 = Eyy,
G = Ey +2a+ 4asin’ 6,
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Rescattering source function

2 2
Sec = Ne <njc2> //dQ’dw’/dﬁf(ﬁ)R(k’ S k) J(K)
3w (1 — Beost) —w(l — Bcosh)), (10)

where w is the frequency of a photon, dQ2 the element of solid angle
(dQ = 2wd¢d cos #), 6 the angle with respect to magnetic field.
Apostrophed quantities correspond to the values before the scattering.
Scattering matrix R is

|a|? |b|? Re (ab) Im (ab)
, B c|? |d|? Re (cd) Im (cd)
Rk = k) = 2Re(ac) 2Re(bd) Re(ad +bc) Im(ad — bc)
—2Im (ac) —2Im(bd) —Im(ad + bc) —Re(ad — bc)
(11)
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Here

= cost cosOCE)(AP) + sin @ sin 0,
= cos0SE)(Ap),

—cos 05 (Ag),

= C9(59),

Q o o v
Il

where A¢p = ¢ — ¢, ¢ is the asimuthal angle.
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Emission

Source function due to emission is

Im ¢y
s _ ckoB., Im ¢
em — 2 0 9
—2Re G12

where B, = hw?/(4713¢?)(exp(hw/T) — 1)~ is the Planck function.
Parameter ¢ is the probability of absorption in the scattering event.
According to Pavlov, Panov, 1976; Nagel, Ventura, 1982; Potekhin, 2008

14 T 4 2 Nee4 —hw/TyAT
= =\ —= 1-— A 12
€ 7 Y v 3 mT hw ( e ) ( )
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Examples of calculated emergent spectra

Intensity, erg-cm?

:
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Left figure — typical spectrum of the emergent radiation in extraordinary wave for a hydrogen

white dwarf atmosphere. The dashed and solid lines represent solutions obtained without and
with frequency redistribution due to relativistic jumps, respectively. Parameters are T = 5eV,
B =10°G, M = 0.8M. Right figure — spectrum of the emergent radiation for a hydrogen

neutron star atmosphere. The dashed and solid lines represent solutions obtained without and

with vacuum polarization, respectively. Parameters are T = 500eV, B =1-10'1 G, M = 1.4M.
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Cyclotron wind in the atmospheres of white dwarfs

Magnetic White Dwarfs, M = 0.6M,

@ Pure hydrogen atmosphere.
e M=08Mg, R~ 10°cm.

@ Vacuum polarization and
redistiribution of radiation

o M= A R? Ny,

@

e

Temperature (eV)

=)

*
10" 10° 10° 10°
Magnetic field log(B)

Points represent parameters of known white dwarfs (Kulebi et al., 2009;
Kawka et al., 2004). Candidates: EUVE J0317-855, SDSS

J100356.324-053825.6, HE 1043-0502, SDSS J234605.44+385337.7, GD
229
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Cyclotron winds in the atmospheres of neutron stars

Neutron Stars, M = ‘I.4Msu

n
550

500
450 @ Pure hydrogen atmosphere.

—~ 400

@ o M= 1.4M@,

il R=12-10°

Cpl =1.2-10%cm.

"é.’zso— @ Vacuum polarization and
D 200

= redistiribution of radiation

e M = 4nR2N,c,

M;S;etic field, 2&
Candidates: RX J0821-43, 1E 1207.4-5209, CXOU J185238.64+004020 and
other CCOs
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Conclusions related to the cyclotron wind

Under LTE assumption, the cyclotron wind forms in atmospheres of
magnetic white dwarfs for T ~ 2 — 10V and B ~ 108 — 10° G and in
atmospheres of neutron stars for T ~ 200 — 500 eV and

B ~ 1019 — 10! G. The value of a mass loss rate is up to 1071 M, /yr.
The outflowing plasma can freely move along the magnetic field lines under
the influence of radiation driven force. The motion across the field is
strongly limited. Some part of the ejected plasma forms two polar jets
along the open field lines. The rest of the wind is accumulated in the closed
domain of the magnetosphere and may appear as a dense plasma disk near
the magnetic equator.
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