MOdified Newtonian Dynamics application to gravitational lensing and galactic dynamics

SDSS J1538+5817

chung-ming ko institute of astronomy and department of physics national central university taiwan (R.O.C.)

GC2012, Lebedev Physical Institute, Moscow, Russia, 2012.05.29

a short discussion on

- acceleration discrepancy
- MOND
- strong lensing
- velocity dispersion

mass

- dynamical mass
 - observe motion then infer mass
 - direct (if we know the dynamics)
- luminous mass
 - observe luminosity then infer mass
 - indirect (involve many physics)
 - ideally, calibrate with dynamical mass (if we believe the dynamics)

what if they don't agree?

- dynamical mass is often larger
 - excess acceleration unaccounted for
- some matters are not luminous
 - what are they? light is not a good tracer of mass? more physics is needed?
- gravitational law is not what we expected – modified gravity?
- law of motion is not what we expected
 - what to do?

minute discrepancy

- existence of Neptune
 - confirmation of dynamical mass by luminous mass (seeing is believing?)
 - successful story of missing mass
- extrasolar planets
 - believing even not seeing
- perihelion of Mercury
 - Einstein's general relativity
 - successful story for modified gravity

large discrepancy (O(1) or more)

- Oort (1932): acceleration of stars perpendicular to Galactic disk
- Zwicky (1933): radial velocity of galaxies in Coma cluster
- Babcock (1939), Mayall (1951): rotation curve of M31
- Kahn & Woltjer (1959): M31 approaches Milky Way against expansion of universe

large discrepancy (O(1) or more)

- Rogstad & Shostak (1972): rotation curve beyond optical disk of spirals from 21 cm
- Rubin et al. (1980): rotation curve of optical disk of spirals

•

• proper motion of stars near galactic centre (Eckart & Genzel 1997, Ghez et al. 1998)

rotation curve of spirals

Sanders & McGaugh (2002)

many more rotation curves

- both dark matter and MOdified Newtonian Dynamics (MOND) can explain the mass (or acceleration) discrepancy in many situations
- perhaps MOND is better than dark better in galaxy scales while dark matter is better at larger scales

acceleration scale?

- it seems that the mass discrepancy occurs when acceleration is smaller than a certain value, and not according to some length scale or mass scale
- of the order of cH_0 (a coincidence?)

MOND

• Milgrom (1983): small acceleration regime, Newton's law of motion is modified

MOND

 view as modified gravity in gravitational systems (Bekenstein & Milgrom 1984)

$$\nabla \cdot [\tilde{\mu} (|\mathbf{g}|/a_0) \mathbf{g}] = \nabla \cdot \mathbf{g}_{\mathrm{N}} = -4\pi G\rho$$
Newtonian gravity
$$\tilde{\mu} (|\mathbf{g}|/a_0) \mathbf{g} - \mathbf{g}_{\mathrm{N}} = \nabla \times \mathbf{h}$$

$$\nabla \times \mathbf{h} = \mathcal{O}(1/r^3)$$
for bound density distribution
$$= 0 \text{ for spherical, cylindrical, planar systems}$$

MOND

• if can be inverted

relativistic theory

- Bekenstein (2004): Tensor-Vector-Scalar
- Milgrom (2009): BiMOND
- MOND as the nonrelativistic limit
- capable of addressing problems such as cosmology and gravitational lensing in the context of MOND
 - cosmology (e.g., Skordis 2006, Skordis et al. 2006, Dodelson & Liguori, 2006)
 - gravitational lensing ...

gravitational lensing

- TeVeS or BiMOND
- weak field,
 small angle
 deflection,
 spherical lens

 same as GR except Newtonian potential is replaced by MONDian potential (Chiu et al. 2006)

image position

 $\theta_{\rm E}^2 = \frac{4G\mathcal{M}D_{\rm LS}}{c^2 D_{\rm L} D_{\rm S}}$

$$\frac{1}{\theta_{\rm E}^2} = \frac{[\chi(\theta_+) + \chi(\theta_-)]}{(\theta_+ + \theta_-)}$$

a relation between mass, acceleration scale and Hubble constant

$$\theta_0^2 = \frac{G\mathcal{M}}{a_0 D_{\rm L}^2}$$

angle of deflection of a point mass lens

- CASTLES catalogue (Rusin et al. 2003)
 - quasar lensing, elliptical lens, lens resolved, double images, mass estimated by population synthesis
 - 10 candidates
 - Hernquist model for the lens
 - choose an interpolation function
 - assume a_0 and H_0 then solve for mass

mass of lens mass consistent with population synthesis					nthesis		
						\sim	$\underline{}$
$M_L(\mathrm{Te})$	eVeS)/10	$^{10}M_{\odot}$			M_L (GR)	M_{*}	[28]
Lens	$\frac{\langle \nabla \Phi_N \rangle}{\alpha_0}$	Bekenstein	Simple	Standard		Chabrier	Salpeter
Q0142 - 100	6.9	11.3 (19.19)	14.2 (24.16)	16.6 (28.29)	19.1 (32.45)	$20.9_{13.0}^{30.8}$	$18.3^{32.2}_{13.2}$
HS0818 + 1227	6.8	18.8 (29.38)	24.0 (37.45)	28.6 (44.65)	32.7 (51.05)	$16.2^{21.2}_{12.6}$	$20.8^{28.1}_{13.4}$
FBQ0951 + 2635	11.2	1.56 (2.19)	1.93 (2.71)	2.16 (3.02)	2.36 (3.30)	$1.1_{0.5}^{2.1}$	$1.5_{0.8}^{3.0}$
BRI0952 - 0115	6.6	2.09 (2.58)	2.70 (3.33)	3.28 (4.04)	3.74 (4.61)	$3.5_{2.7}^{4.0}$	$4.4_{3.5}^{5.2}$
Q1017 - 207	6.8	2.63 (6.33)	3.36 (8.09)	4.02 (9.67)	4.60 (11.06)	$4.3_{1.4}^{13.0}$	$6.4_{2.3}^{19.0}$
HE1104 - 1805	6.6	48.1 (63.47)	62.1 (81.90)	75.3 (99.37)	85.9 (113.41)	$22.8_{12.7}^{51.2}$	$36.6_{23.1}^{63.7}$
LBQ1009 - 025	6.7	8.02 (11.23)	10.1 (14.15)	11.8 (16.53)	13.5 (18.92)	$5.5_{4.2}^{7.9}$	$7.4_{5.0}^{9.8}$
B1030 + 071	9.4	10.5 (17.88)	12.9 (22.27)	14.7 (25.06)	16.5 (28.09)	$10.6^{15.3}_{6.5}$	$14.5_{8.3}^{21.3}$
SBS1520 + 530	7.6	12.6 (17.64)	16.0 (22.41)	18.8 (26.38)	21.2 (29.67)	$18.5_{11.2}^{30.9}$	$21.8_{11.9}^{34.1}$
HE2149 - 274	7.1	7.34 (14.17)	9.31 (17.98)	11.0 (21.30)	12.5 (24.24)	$4.6_{3.6}^{6.7}$	$6.9_{5.0}^{8.9}$

Chiu et al. (2011)

no dark matter is needed, as expected

time delay

 time delay between the two images formed by a spherical lens

- time delay systems (Danuta & Jens 2010, McGreer et al. 2010)
 - quasar lensing, elliptical lens, lens resolved, double images
 - 4 candidates
 - Hernquist model for the lens
 - choose an interpolation function
 - assume a_0 then solve for mass and H_0

Hubble constant from time delay

• H₀ large uncertainty but consistent with current value

galactic dynamics

- Jeans equation
- spherical, isotropic
- light traces mass distribution
 - deduce mass density distribution from brightness distribution
 - hence gravity distribution

velocity dispersion

- 3D velocity dispersion $\sigma_r^2(r) = \frac{G\mathcal{M}}{D_{\rm L}^2 \rho(r)} \int_r^\infty \rho(r') \tilde{g}(r') \, \mathrm{d}r'$
- projected velocity dispersion

velocity dispersion

cumulative projected velocity dispersion

$$\frac{1}{\theta_{\rm E}^2} = \frac{1}{\sigma_S^2(R)S(R)} \int_0^R \sigma_I^2(R') I(R') 2\pi R'^2 \,\mathrm{d}R'$$

a relation between mass, acceleration scale and Hubble constant

$$S(R) = \int_0^R I(R') 2\pi R'^2 \,\mathrm{d}R'$$

cumulative surface brightness

acceleration scale a_0

- a_0 is the most important number in MOND
 - in the past a₀ is obtained from spirals, such as rotation curves (e.g., Sanders & McGaugh 2002), baryonic Tully-Fisher relation (McGaugh 2011, 2012)
 - $-a_0 \approx 1.2 \times 10^{-10} \text{ m/s}^2$
 - first attempt to find a_0 from ellipticals
 - image from gravitational lensing and velocity dispersion of lens

- SLACS (Auger et al. 2009)
 - galaxy-galaxy lensing, elliptical lens, lens resolved, double images
 - 35 candidates (1 with double sources)
 - Hernquist model for the lens
 - choose an interpolation function
 - assume H_0 then solve for mass and a_0

SDSSJ1204+0358	SDSSJ0946+1006	SDSSJ0252+0039	SDSSJ1153+4612	SDSSJ0008-0004	SDSSJ1142+1001	SDSSJ0029-0055
SDSSJ1306+0600	SDSSJ0903+4116	SDSSJ0959+4416	SDSSJ0935-0003	SDSSJ1023+4230	SDSSJ1020+1122	<mark>SDSSJ1538+5817</mark>
SDSSJ0808+4706	SDSSJ1134+6027	SDSSJ1636+4707	SDSSJ0330-0020	SDSSJ2302-0840	SDSSJ2321-0939	SDSSJ1319+1504
SDSSJ1430+4105	SDSSJ1436-0000	SDSSJ0044+0113	SDSSJ0037-0942	SDSSJ1621+3931	SDSSJ1112+0826	SDSSJ1218+0830
SDSSJ1531-0105	SDSSJ1318-0313	SDSSJ1443+0304	SDSSJ1106+5228	SDSSJ2341+0000	SDSSJ1100+5329	SDSSJ1029+0420

SDSSJ1020+1122

SDSSJ0808+4706

SDSSJ1430+4105

SDSSJ1531-0105

SDSSJ1436-0000

SDSSJ1318-0313

• only 17 of them give positive a_0

SDSSJ2302-0840

SDSSJ2321-0939

SDSSJ2341+0000

acceleration scale from ellipticals

 average a₀ is around 4.46×10⁻¹⁰ m/s² (preliminary)

golden opportunity?

- SDSS J1538+5817
 - a lensing system with double sources
 - dispersion velocity

- three combinations to get mass and a_0
- -velocity + pair: $a_0 \approx 6.79 \times 10^{-10} \text{ m/s}^2$
- -velocity + ring: $a_0 \approx 2.42 \times 10^{-10} \text{ m/s}^2$
- pair + ring: no positive solution for a_0

- MOND is in trouble???
 - method is sensitive to measurement error
 - better understanding and treatment of error may do the tricks
 - stay tuned

remarks

- excess acceleration in galaxy scale can be explained by dark matter or MOND
- both have their own free parameter or free function
 - MOND's free function is more constrained and perhaps is easier to falsify

 if it turns out that MOND is only an empirical shortcut to explain observation, the underlying theory should come up with a natural explanation of a₀ (preferentially close to cH₀)

gravitational redshift

- gravitational redshift effect from clusters of galaxies is embedded in their velocity dispersion data (Cappi 1995)
- stacking kinematic data of a large number of clusters (several thousands or more) can pull out the gravitational redshift effect (Wojtak et al. 2011)

relative redshift

- 3D relative gravitational redshift $\Xi_r(r) = \Phi(r) - \Phi(0) = \frac{G\mathcal{M}}{c^2 D_L^2} \int_0^r \tilde{g}(r') dr'$
- projected gravitational redshift

$$\frac{1}{\theta_{\rm E}^2} = \frac{D_{\rm S}}{2D_{\rm L}D_{\rm LS}\Xi_I(R)I(R)} \int_R^\infty \frac{\rho(r)r\,\mathrm{d}r}{\Upsilon\sqrt{r^2 - R^2}} \int_0^r \tilde{g}(r')\,\mathrm{d}r'$$

a relation between mass, acceleration scale and Hubble constant

- existence of Neptune
 - Neptune was proposed to explain some irregularity of the orbit of Uranus (Le Verrier 1945,1946, Adams 1945, 1946)
 - Neptune was then discovered (Galle 1946)
 - confirmation of dynamical mass by luminous mass (seeing is believing?)
 - successful story of missing mass

- extrasolar planets
 - wobbling of stars
 - (radial velocity or astrometry)
 - microlensing
 - transit timing variations
 - believing even not seeing

HIM			
try)	MNNNNNNN	, MMM	
	MN	5	

tally (2012.05.12)

Jean Schneider exoplanet.eu/catalog.php

method	planets	planetary systems	multi-planet systems
wobbling (radial velocity and astrometry)	702	560	94
transit	231	197	30
microlensing	15	14	1
imaging	31	27	2
timing	17	12	4
total	765	613	101

note: transit confirmed by wobbling

- perihelion of mercury
 - precession of perihelion
 - interaction with known planets
 and shape of the sun can account for most but not all
 - unseen planet is proposed, but not found
 - Einstein's general relativity
 - successful story for modified gravity

