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STOCHASTIC DYNAMO IN RANDOM ACOUSTIC FIELDS

V. I. Klyatskin

A.M. Obukhov Institute of Atmospheric Physics RAS

The problem on excitation of the magnetic field (stochastic dynamo)
by random acoustic field of velocities is considered on the basis of the
functional method of the method of successive approximations. Under
conditions of absence of acoustic wave attenuation in the first (diffusion)
approximation, the statistical Lyapunov characteristic parameter of mag-

netic field energy α = − lim
t→∞

∂

∂t
〈ln E(r, t)〉 vanishes. This means that

no structure formation (clustering) is present in the magnetic field
realizations in the scope of this approximation. The possibility of cluste-
ring magnetic field energy is governed by the sign of the statistical
Lyapunov characteristic parameter calculated in the second approxima-
tion of the method. It is shown that clustering driven by the acoustic
field velocity is realized with probability one, i.e., almost in every indivi-
dual realization. The characteristic setup time of clustering is evaluated.
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Introduction

An important issue in the theory of magnetohydrodynamic turbulence
is the treatment of diffusion at the initial phases of development. The
basic equation is the induction equation for a solenoidal magnetic field
H(r, t) in the kinematic approximation(

∂

∂t
+

∂

∂r
u(r, t)

)
H(r, t) =

(
H(r, t) · ∂

∂r

)
u(r, t), H(r, 0) = H0. (1)

Here u(r, t) is the field of turbulent velocities, which are considered
homogeneous and isotropic in space and stationary in time gaussian
field with the given statistical properties.

Dynamic system (1) is conservative, and the magnetic flux
∫

dr H(r, t)

remain constant during the evolution. For homogeneous initial condition
H(r, 0) = H0, that we consider here, the following equality is a corollary
of the conservatism of dynamic systems (1) 〈H(r, t)〉 = H0, where 〈· · · 〉
denotes averaging over an ensemble of realizations of random velocity
field {u(r, t)}.
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A specific feature of Eq. (1) is the parametric excitation with time in
each realization of the magnetic field energy E(r, t) = H2(r, t) (for a
turbulent fluid flow), which is called the stochastic dynamo.

Such a parametric excitation is accompanied by the increase of all
statistical characteristics of the problem solution (such as moment and
correlation functions of any order) with time.

On the other hand, separate field realizations of magnetic field
energy can show the stochastic nonstationary phenomenon of clustering
in phase and physical spaces.

Clustering of a field is identified as the emergence of compact areas
with large values of this field against the residual background of areas
where these values are fairly low.
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I illustrate structure formation in magnetic field by the extract from
an internet-page:

"What does puzzle astrophysicists so strongly?
Contrary to hypotheses formed for fifty years, at the boundary of

planetary system observers encountered not a linear and gradually decreasing
magnetic field (or magnetic laminar), but a boiling foam of locally
magnetized areas each of hundreds of millions kilometers in extent,
which form a non-stationary cellular structure in which magnetic field
lines are permanently breaking and recombining to form new areas—
magnetic "bubbles" .
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Statistical characteristics of the velocity field

In the general case, random field u(r, t) is assumed to be the divergent
(div u(r, t) 6= 0) Gaussian field with zero-valued mean and correlation
and spectral tensors (τ = t− t′)

〈ui(r, t)uj(r1, t
′)〉 = σ2

uBij(r − r′, τ ) = σ2
u

∫
dk Eij(k, τ )eik(r−r′), (2)

where σ2
u =

〈
u2(r, t)

〉
is the variance of the velocity field. For a spatially

homogeneous and isotropic random velocity field, the spatial spectral
tensor has the form

Eij(k, τ ) = Es
ij(k, τ ) + Ep

ij(k, τ ),

where the spectral components have the following structure

Es
ij(k, τ ) = Es(k, τ )

(
δij −

kikj

k2

)
, Ep

ij(k, τ ) = Ep(k, τ )
kikj

k2
.

Here, Es(k, τ ) and Ep(k, τ ) are the solenoidal and potential components
of the spectral density of the velocity field, respectively.
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Introduce the parameters Ds and Ds that describe statistical properties
of problem solution in the diffusion approximation,

Ds =
1

d− 1

∞∫
0

dτ 〈ω(r, t + τ )ω(r, t)〉, Dp =

∞∫
0

dτ

〈
∂u(r, t + τ )

∂r

∂u(r, t)

∂r

〉
,

(3)
where d is the dimension of space and ω(r, t) = ∇×u(r, t) is the curl of
the velocity field.

Note that determination of different statistical averages concerned
with solving stochastic equations assumes necessity of splitting correlations
of random field u(r, t) with different functionals of this field like R[t; u(r, τ )],
where 0 < τ ≤ t. In the case of the Gaussian field homogeneous in space
and stationary in time with the correlation function (2) this splitting is
performed by the Furutsu–Novikov formula

〈ui(r, t)R[t; u(r, τ )]〉 = σ2
u

t∫
0

dt′
∫

dr′Bij(r − r′, t− t′)

〈
δR[t; u(r, τ )]

δuj(r′, t′)

〉
.
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In particular, in the diffusion approximation, the Lyapunov characteristic

parameter α = − lim
t→∞

∂

∂t
〈ln E(r, t)〉 for magnetic field energy is given by

the formula
α = 2σ2

u

d− 1

d + 2
(Dp −Ds) , (4)

and, in this case, clustering of magnetic field energy is realized in
separate realizations with probability one only if α > 0, i.e. under
the condition Dp > Ds. The characteristic time of cluster structure
formation is governed by the Lyapunov characteristic exponent t ∼ 1/α.

In the opposite case, for Dp ≤ Ds, particular realizations show only
general increase of magnetic field energy with time in the whole of space.
In particular, clustering is absent for a noncompressible flow (Dp = 0),
but clustering is present for a potential field.
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For the random Gaussian acoustic velocity field u(r, t) statistically
homogeneous and isotropic in space and stationary in time, the correlation
and spectral tensors (τ = t− t′) have the form

〈ui(r, t)uj(r
′, t′)〉 = σ2

uBij(r − r′, τ ) = σ2
u

∫
dk Eij(k)f (k, r, τ ),

where σ2
u =

〈
u2(r, t)

〉
is the variance of the velocity field and functions

f (k, r, τ ) and Eij(k) are as follows

f (k, r, τ ) = e−λpk2τ cos{kr − ω(k)τ} Eij(k) = E(k)
kikj

k2
.

Integral of this function at r = 0 with respect to time equals

I(k) =

∞∫
0

dt f (k,0, t) =
λp

λ2
pk

2 + c2
,

and, consequently, diffusion coefficient Dp vanishes for λp → 0.

Note that, in the general case, the integral
∞∫
0

dt cos {ω(k)t} = πδ (ω(k))

describes resonance features of an acoustic field in the higher approxima-
tions of the perturbation theory.
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Basic equations

We demonstrate the general idea of the method of successive approxima-
tions by the example of the equation of magnetic field induction (1).

The local behavior of magnetic field realizations H(r, t) in the random
velocity field {u(r, t)} is described in terms of magnetic field probability
density. To determine this density, we introduce the indicator function
of magnetic field ϕ(r, t; H) = δ(H(r, t) − H) concentrated on surface
H(r, t) = H = const. This function satisfies the linear Liouville equation

∂

∂t
ϕ(r, t; H) = N̂(r, t; H)ϕ(r, t; H), (5)

with the initial condition ϕ(r, 0; H) = ϕ0(H) = δ(H(r, 0) − H0), where
operator N̂(r, t; H)

N̂(r, t; H) = − ∂

∂rk
uk(r, t)− ∂uk(r, t)

∂rl

∂

∂Hk
Hl +

∂uk(r, t)

∂rk

(
1 +

∂

∂Hl
Hl

)
.
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Rewrite the Liouville equation in the form of an integral equation

ϕ(r, t; H) = ϕ0(H) +

t∫
0

dτN̂(r, τ ; H)ϕ(r, τ ; H).

The first variational derivative of the indicator function

Si(r, t; r′, t′; H) =
δϕ(r, t; H)

δui(r′, t′)

satisfies, for 0 ≤ t′ ≤ t, the following stochastic integral equation

Si(r, t; r′, t′; H) = N̂i(r, r′; H)ϕ(r, t′; H)θ(t− t′)

+

t∫
t′

dτN̂(r, τ ; H)Si(r, τ ; r′, t′; H),

where new operator N̂i(r, r′; H) =
δN̂(r, t; H)

δui(r′, t′)
can be represented in the

form

N̂i(r, r′; H) = −δ(r − r′)
∂

∂ri
− ∂δ(r − r′)

∂rl

∂

∂Hi
Hl +

∂δ(r − r′)

∂ri

∂

∂Hl
Hl.
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In a similar way, the second variational derivative

Sij(r, t; r′, t′; r′′, t′′; H) =
δ2ϕ(r, t; H)

δui(r′, t′)δuj(r′′, t′′)

satisfies the stochastic integral equation

Sij(r, t; r′, t′; r′′, t′′; H)

= N̂i(r, r′; H)Sj(r, t′; r′′, t′′; H)θ(t− t′)θ(t′ − t′′)

+ N̂j(r, r′′; H)Si(r, t′′; r′, t′; H)θ(t− t′′)θ(t′′ − t′)

+

t∫
max{t′,t′′}

dτ N̂(r, τ ; H)Sij(r, τ ; r′, t′; r′′, t′′; H).

The one-point probability density of the solution to the dynamic
equation (1) coincides with the indicator function averaged over an
ensemble of random velocity field realizations

P (r, t; H) = 〈ϕ(r, t; H)〉 .
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Statistical averaging

Average equation (5) over an ensemble of realizations of random field
{u(r, t)}. Using the Furutsu–Novikov formula, we obtain an nonclosed
equation in probability density independent of spatial point {r},

∂

∂t
P (t; H) = −σ2

u

t∫
0

dt′
∫

dr′
∂Bki(r − r′, t− t′)

∂rl

∂

∂Hk
Hl 〈Si(r, t; r′, t′; H)〉

+ σ2
u

t∫
0

dt′
∫

dr′
∂Bki(r − r′, t− t′)

∂rk

(
1 +

∂

∂Hl
Hl

)
〈Si(r, t; r′, t′; H)〉 . (6)

Averaging then the stochastic equation in the first variational derivative
over an ensemble of realizations of random field {u(r, t)}, we obtain an
equation in average value of the first variational derivative 〈Sl (r, t; r′, t′; H)〉
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〈Si (r, t; r′, t′; H)〉 − N̂i(r, r′; H)P (t′; H)θ(t− t′)

= −σ2
u

t∫
t′

dτ

τ∫
0

dt′′
∫

dr′′
∂

∂rk
Bkj(r − r′′, τ − t′′) 〈Sij(r, τ ; r′, t′; r′′, t′′; H)〉

− σ2
u

t∫
t′

dτ

τ∫
0

dt′′
∫

dr′′
∂Bkj(r − r′′, τ − t′′)

∂rl

∂

∂Hk
Hl 〈Sij(r, τ ; r′, t′; r′′, t′′; H)〉

+ σ2
u

t∫
t′

dτ

τ∫
0

dt′′
∫

dr′′
∂Bkj(r − r′′, τ − t′′)

∂rk

(
1 +

∂

∂Hl
Hl

)
× 〈Sij(r, τ ; r′, t′; r′′, t′′; H)〉 .

The right-hand side of this equation includes average values of the
second variational derivatives.
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Average value of second variational derivative is given by the expression

〈Sij(r, τ ; r′, t′; r′′, t′′; H)〉
= N̂i(r, r′; H) 〈Sj(r, t′; r′′, t′′; H)〉 θ(τ − t′)θ(t′ − t′′)

+ N̂j(r, r′′; H) 〈Si(r, t′′; r′, t′; H)〉 θ(τ − t′′)θ(t′′ − t′)

+

τ∫
max{t′,t′′}

dτ1

〈
N̂(r, τ1; H)Sij(r, τ1; r

′, t′; r′′, t′′; ρ)
〉

,

in which the last term (proportional to σ2
u) contains the third variaional

derivatives. We will neglect the last term because we will use the method
of successive approxiations considering the effects of the order of σ4

u.
Thus, we arrived at the closed system of equations in the probability

density and average value of the first variational derivative with a very
great number of terms.
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Solving this system by the method of successive approximations to
small terms of the order of σ2

u, we arrive at the operator equation in the
probability density, which is valid in the second order of the method of
successive approximations

∂

∂t
P (t; H) = M̂(t; H)P (t; H),

where operator M̂(t; H) = M̂1(t; H)+M̂2(t; H). The first term M̂1 correspond
to the diffusion approximation and is the term of the first order in
parameter σ2

u. The second term M̂2 corresponds to the approximation
of the second order.
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First (diffusion) approximation

In the scope of the first approximation, equation in the probability
density of random acoustic field has the form

∂

∂t
P (t; H) = σ2

u

D
(1)
H

d(d + 2)

{
∂2

∂Hi∂Hi
HpHp +

(
d2 − 2

) ∂2

∂Hk∂Hp
HkHp

}
P (t; H),

where the diffusion coefficient in H–space has the form

D
(1)
H = σ2

u

λp

c2

∫
dk k2E(k).

Correspondingly, the equation in probability density of magnetoc field
energy E(r, t) = H2(r, t) is lognormal, and the Lyapunov characteristic
exponent is

α = 2
d− 1

d + 2
D

(1)
H .
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Consequently, clustering of magnetic field energy is realized with
probability one, i.e., it occurs in almost all realizations. The setup time
of cluster structure depends on dissipative factor. In the absence of
wave field attenuation, parameter α = 0 and, as we mentioned earlier,
the second approximation is required for answering whether clustering
is present in particular realizations, or not.

Second approximation for magnetic field

The above equation with operator M̂(t; H) is very cumbersome in the
general case. Bearing in mind that our main interest consists in answering
whether magnetic field energy will show clustering or general increase
with time in particular realizations, we confine ourselves to calculating
paramer α in the second approximation. From the structure of operator
M̂(t; H) follows that only few terms will contribute to the Lyapunov
characteristic parameter α. Namely, only seven terms can be obtained
for operator M̂2(t; H).
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Multiplying this equation by ln E, integrating it by parts with respect
to H, and calculating asymptotic form of time-dependent integrals for
t → ∞, we obtain that average logarithm of energy is negative in the
three-dimensional case (d = 3)

∂

∂t
〈ln E(r, t)〉 = −σ4

u

76π2

c3

∫
k4dk E2(k).

Consequently, the Lyapunov exponent in the second order of the
method of successive approximations has the form

E∗(t) = E0e
〈ln E(r,t)〉 = E0e

−α2t,

where the Lyapunov characteristic parameter is

α2 =
σ2

u

c2

∫
dk k2E(k)

[
4

5
λp + 76π2σ

2
u

c
k2E(k)

]
.
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Thus, we have calculated the Lyapunov exponent for magnetic field
energy in random acoustic velocity field in the second order of the
method of successive approximations In this approximation, the Lyapunov
exponent decreases with time, which is evidence of clustering of magnetic
field energy with probability one, i.e., almost in every realization of
magnetic field energy. The characteristic setup time of cluster structure
of magnetic field energy is governed by the Lyapunov characteristic
parameter α2, namely t ∼ 1/α2.

THANK YOU VERY MUCH!
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Remarks.
General idea of the method of perturbation theory is suggested in

paper V.I. Klyatskin, V.I. Tatarskii, Radiophysics and Quantum Electro-
nics 14 1100 (1971).

General theory of clustering of magnetic field energy is described in
review V.I. Klyatskin, Physics–Uspekhi, 54 (5) (2011) and monographs
V.I. Klyatskin, Lectures on Dynamics of Stochastic Systems, Elsevier,
Amsterdam (2011), В.И. Кляцкин Очерки по динамике стохасти-
ческих систем, М: URSS (2012).

Application of the method of perturbation theory to diffusion of a
passive scalar tracer is given in monographs V.I. Klyatskin Stochastic
Equations through the Eye of the Physicist: Basic Concepts, Exact
Results and Asymptotic Approximations, Elsevier, Amsterdam (2005)
and in two Russian books (2002, 2008).

An extensive description will be published in journal Theore-
tical and Mathematical Physics, 2012.
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