Coupled electric and magnetic effects in frustrated Mott insulators: currents, dipoles and monopoles

D. I. Khomskii

Koeln University, Germany

- Introduction
- Spontaneous currents and dipoles in Mott insulators
- Dipoles on monopoles in spin ice
- Conclusions

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

The Hubbard model

$$E_{\rm g} \sim U - 2zt$$

n=1, U>t: Mott insulator

Localized electrons/localized magnetic moments

$$H_{eff} = \frac{2t^2}{U} \sum_{(ij)} \mathbf{S}_i \mathbf{S}_j.$$

Fig. 1. Two possible configurations and corresponding energy gain for non-degenerate orbitals.

Electronic Orbital Currents and Polarization in Mott Insulators

L.N. Bulaevskii, C.D. Batista, M. Mostovoy and D. Khomskii
PRB 78, 024402 (2008)

D. Khomskii J.Phys.-Cond. Mat. 22, 164209 (2010)

Mott insulators

$$H = -\sum_{ij\sigma} t_{ij} (c_{i\sigma}^{+} c_{j\sigma}^{} + c_{j\sigma}^{+} c_{i\sigma}^{}) + \frac{U}{2} \sum_{i} (n_{i}^{} - 1)^{2},$$

Standard paradigm: for U>>t and one electron per site electrons are localized on sites. All charge degrees of freedom are frozen out; only spin degrees of freedom remain in the ground and lowest excited states

$$H_S = \frac{4t^2}{U}(\vec{S}_1 \cdot \vec{S}_2 - 1/4).$$

Not the full truth!

For certain spin configurations there exist in the ground state of strong Mott insulators **spontaneous electric currents** (and corresponding orbital moments)!

For some other spin textures there may exist a **spontaneous** charge redistribution, so that $\langle n_i \rangle$ is not 1! This, in particular, can lead to the appearance of a spontaneous **electric** polarization (a purely *electronic mechanism of multiferroic behaviour*)

These phenomena, in particular, appear in frustrated systems, with scalar chirality playing important role

Spin systems: often complicated spin structures, especially in frustrated systems – e.g. those containing triangles as building blocks

- Isolated triangles (trinuclear clusters) e.g. in some magnetic molecules (V15, ...)
- Solids with isolated triangles (La₄Cu₃MoO₁₂)
- Triangular lattices
- Kagome
- Pyrochlore

The Cathedral San Giusto, Trieste, 6-14 century

Spinels:

The B-site pyrochlore lattice: geometrically frustrated for AF

Often complicated ground states; sometimes $\langle \vec{\mathbf{S}}_i \rangle = 0$

spin liquids

Some structures, besides $\langle \vec{\mathbf{S}}_i \rangle$, are characterized by:

Vector chirality

$$\left[\vec{\mathbf{S}}_{i} \times \vec{\mathbf{S}}_{j}\right]$$

Scalar chirality

$$\chi_{123} = \vec{\mathbf{S}}_1 \left[\vec{\mathbf{S}}_2 \times \vec{\mathbf{S}}_3 \right]$$

- solid angle

$$\chi$$
 may be + or -:

Scalar chirality χ is often invoked in different situations:

- Anyon superconductivity
- Berry-phase mechanism of anomalous Hall effect
- New universality classes of spin-liquids
- Chiral spin glasses

Chirality in frustrated systems: Kagome

a) Uniform chirality (q=0) b) Staggered chirality ($\sqrt{3}x\sqrt{3}$)

But what is the scalar chirality physically?

What does it couple to?

How to measure it?

Breaks time-reversal-invariance T and inversion P - like currents!

$$\chi_{123} \neq 0$$
 means spontaneous circular electric current $j_{123} \neq 0$ and orbital moment $L_{123} \neq 0$

$$L_{123} \propto j_{123} \propto \chi_{123}$$

Couples to magnetic field:

$$-\vec{L}\vec{H} \sim -\chi H$$

Difference between Mott and band insulators

$$H = -\sum_{ij\sigma} t_{ij} (c_{i\sigma}^{+} c_{j\sigma}^{-} + c_{j\sigma}^{+} c_{i\sigma}^{-}) + \frac{U}{2} \sum_{i} (n_{i} - 1)^{2}, \quad \langle n_{i} \rangle = 1.$$

- Only in the limit $U \to \infty$ electrons are localized on sites.
- At $t/U \neq 0$ electrons can hop between sites.

$$H_S = \frac{4t^2}{U}(\vec{S}_1 \cdot \vec{S}_2 - 1/4).$$

Spin current operator and scalar spin chirality

Current operator for Hubbard Hamiltonian on bond ij:

$$\vec{I}_{ij} = \frac{iet_{ij}\vec{r}_{ij}}{\hbar r_{ij}} \sum_{\sigma} (c_{i\sigma}^{+}c_{j\sigma} - c_{j\sigma}^{+}c_{i\sigma}).$$

Projected current operator: odd # of spin operators, scalar in spin space. For smallest loop, triangle,

$$\vec{I}_{S,12}(3) = \frac{\vec{r}_{ij}}{r_{ij}} \frac{24et_{12}t_{23}t_{31}}{\hbar U^2} [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3.$$

Current via bond 23

$$I_{S,23} = I_{S,23}(1) + I_{S,23}(4).$$

lacktriangle On bipartite nn lattice I_s is absent.

Boundary and persistent current

Boundary current in gaped 2d insulator

Orbital currents in the spin ordered ground state $\langle \vec{S}_i \rangle \neq 0$

Necessary condition for orbital currents is nonzero average chirality

$$\chi_{12,3} = [\vec{S}_1 \times \vec{S}_2] \Box \vec{S}_3, \qquad \langle \chi_{ij,k} \rangle \neq 0.$$

It may be inherent to spin ordering or induced by magnetic field

Triangles with ± chirality

Tetrahedra with [111] anisotropy

Electronic polarization on triangle

Purely electronic mechanism of multiferroic behavior!

Dipoles are also created by lattice distortions (striction); the expression for

polarization/dipole is the same, $\mathbf{D} \sim \mathbf{P} \sim \mathbf{S}_1(\mathbf{S}_2 - \mathbf{S}_3) - 2\mathbf{S}_2\mathbf{S}_3$ (M.Mostovoy)

Dipoles are also created by lattice distortions (striction); the expression for

polarization/dipole is the same, $\mathbf{D} \sim \mathbf{P} \sim \mathbf{S}_1(\mathbf{S}_2 - \mathbf{S}_3) - 2\mathbf{S}_2\mathbf{S}_3$ (M.Mostovoy)

Charges on kagome lattice

1/3 magnetization plateau:

Charge ordering for spins 1/3 in magnetic field: spin-driven CDW

Typical situation at the magnetization plateaux!

Diamond chain (azurite Cu₃(CO₃)₂(OH)₂)

Saw-tooth (or delta-) chain

Net polarization

Net polarization

$Cu_2(AsO_4)(OH) \cdot 3H_2O$ (euchroite)

Figure 1. (a) Structure of euchroite, (h) sharentanuive wf thand alternal aiam.

Isolated triangle: accounting for DM interaction

- DM coupling: $H_{DM} = \sum_{ij} D_{ij} \vec{S}_i \times \vec{S}_j$.
- For V15 $H_{DM} \approx D_z L_z S_z$.
- Splits lowest quartet into 2 doublets $|+\uparrow\rangle, |-\downarrow\rangle$ and $|+\downarrow\rangle, |-\uparrow\rangle$ separated by energy $\Delta=D_z$.
- Ac electric field induces transitions between $\chi = \pm 1$.
- Ac magnetic field induces transitions between $S_z = \pm 1/2$.

ESR: magnetic field (-HM) causes transitions

$$|1/2,\chi\rangle \rightarrow |-1/2,\chi\rangle, \text{ or } |-1/2,\chi\rangle \rightarrow |1/2,\chi\rangle$$

Here: electric field (-Ed) has nondiagonal matrix elements in χ :

$$\langle \chi = + |\mathbf{d}| \chi = - \rangle \neq 0$$
 electric field will cause

dipole-active transitions $S^z,+\rangle \Leftrightarrow S^z,-\rangle$

$$|S^z,+\rangle \Leftrightarrow |S^z,-\rangle$$

-- ESR caused by electric field E!

Triangle: S=1/2, chirality (or pseudosin T) = $\frac{1}{2}$

Can one use chirality instead of spin for quantum computation etc, as a qubit instead of spin?

We can control it by magnetic field (chirality = current = orbital moment) and by electric field

Georgeot, Mila, PRL (2010)

Monopoles and dipoles in spin ice

Pyrochlore: Two interpenetrating metal sublattices

pyrochlore $R_2Ti_2O_7$ · geometrical spin frustration

R=Ho

Ferromagnetic interaction, Ising spin (spin ice)

R = Gd

Antiferromagnetic interaction, Heisenberg spin

Excitations creating magnetic monopole (Castelnovo, Moessner and Sondhi)

M J P Gingras Science 2009;326:375-376

2-in/2-out: net magnetic charge inside tetrahedron zero

3-in/1-out: net magnetic charge inside tetrahedron ≠ 0 – monopole or antimonopole

Monopoles/antimonopoles at every tetraheder, staggered

Fig. 1. Phase diagram of Dy₂Ti₂O₇ in a [111] magnetic field, determined by magnetization and specific heat measurements. The dashed line

Dipoles on tetrahedra:

4-in or 4-out: d=0

2-in/2-out (spin ice): **d=0**

3-in/1-out or 1-in/3-out (monopoles/antimonopoles): $\mathbf{d} \neq \mathbf{0}$

$$\langle n_1 \rangle = 1 + \delta n_1 = 1 - 8 \left(\frac{t}{U} \right)^3 \left[\mathbf{S}_1 \left(\mathbf{S}_2 + \mathbf{S}_3 \right) - 2 \mathbf{S}_2 \mathbf{S}_3 \right]$$

For 4-in state: from the condition $S_1 + S_2 + S_3 + S_4 = 0 \delta n_1 = 0$. of $S_1 \longrightarrow -S_1$ (3-in/1-out, *monopole*) gives nonzero charge redistribution and $d \neq 0$.

Charge redistribution and dipoles are even functions of S; inversion of all spins does not change direction of a dipole: ——— Direction of dipoles on monopoles and antimonopoles is the same: e.g. from the center of tetrahedron to a "special" spin

Random ice rule spins (no external magnetic field)

In general directions of electric dipoles are "random" – in any of [111] directions

Dipoles on monopoles, possible consequences:

- "Electric" activity of monopoles; contribution to dielectric constant $\varepsilon(\omega)$
- External <u>electric</u> field: Decreases excitation energy of certain monopoles $\omega = \omega_0 - dE$

Inhomogeneous electric field (tip): will attract some monopoles/dipoles and repel other

- In the magnetic field H || [001] **E** will promote monopoles, and decrease magnetization **M**, and decrease T_c
- In the field $\mathbf{H} \parallel [111]$ staggered Ising-like dipoles; in \mathbf{E}_{\perp} ?

"Electric" activity of monopoles; contribution to dielectric constant ε(ω)

Fig. 1. Phase diagram of Dy₂Ti₂O₇ in a [111] magnetic field, determined by magnetization and specific heat measurements. The dashed line

Magnetodielectric response of the spin-ice Dy₂Ti₂O₇

Masafumi Saito, 1 Ryuji Higashinaka, 1 and Yoshiteru Maeno 1,2,*

FIG. 6. (Color online) Magnetic field dependence of (a) the real and (b) the imaginary parts of the dielectric constant of Dy₂Ti₂O₇

External electric field: Decreases excitation energy of certain monopoles

$$\omega = \omega_0 - dE$$

Estimates: ξ =dE =eu(Å)E(V/cm)

for u~0.01Å and E ~10⁵V/cm ϵ ~10⁻⁵ eV~0.1K

In strong magnetic field H || [001]

External <u>electric</u> field: Decreases excitation energy of certain monopoles

$$\omega = \omega_0 - dE$$

In strong magnetic field H || [001]

Monopoles: $d^z > 0$

Antimonopoles: **d**^z < 0

Inhomogeneous electric field

In H // [001]:

Monopoles: $d^z > 0$

Antimonopoles: **d**^z < 0

Polarization carried by the usual spin waves

How polarization emerges in a spin wave (magnon). (a) The classical picture of a spin wave in a ferromagnet: the spin (red arrow) precesses about a fixed axis (blue). The deviation is measured by the black arrows. (b) According to Eq. (1), as a spinwave packet propagates along **Q**, it will also carry an electric dipole moment

CONCLUSIONS 1

- Contrary to the common belief, there are real charge effects in strong Mott insulators (with frustrated lattices): spin-driven spontaneous electric currents and orbital moments, and charge redistribution in the ground state
- Spontaneous currents are ~ scalar spin chirality $\chi_{123} = \vec{S}_1 [\vec{S}_2 \times \vec{S}_3]$
- Charge redistribution (<n_i> is not 1!) may lead to electric polarization (purely electronic mechanism of multiferroicity)
- Many consequences:
- In the ground state: lifting of degeneracy; formation of spin-driven CDW,
- In dynamics: electric field-induced "ESR"; rotation of electric polarization by spins; contribution of spins to low-frequency dielectric function; possibility of negative refraction index; etc

Conclusions 2

There should be an electric dipole at each magnetic monopole in spin ice – with different consequences

Analogy: electrons have electric charge and spin/magnetic dipole

monopoles in spin ice have magnetic charge and electric dipole

Such effect was already observed for Neel domain walls in ferromagnets (cf. spiral multiferroics):

Fig. 2 The effect of electric field in the vicinity of electrode (1) on magnetic domain wall (2) in the films of ferrite garnets: a) initial state b) at the voltage of +1500 V applied