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"What are you talking about? —
how can you have halfa
quantum theory?"







Quantum Mechanics

I think I can safely say that nobody Aj - IGHARD EYNMAN
understands quantum mechanics.
- Richard Feynman

Anyone who is not shocked by quantum
it o theory has not understood a single word.

Very interesting theory -- it makes no sense at aII

Groucho Marx
Gott wurfelt nicht!

Albert Einstein

The more success the quantum theory
has the sillier it looks.




Bohr-Sommerfeld quantization

phase space
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Niels Bohr Arnold Sommerfeld



Bohr-Sommerfeld quantization
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Niels Bohr Arnold Sommerfeld



Quantization of M = S~°
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"x = rsinpcosf
<y = rsinysnl

L o Z = TCcosp
1 dx Ady
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"Quantum Symplectic Geometry”

symplectic manifold ~> Y

(M, 0)
J

algebra of functions ~ 1

on M

Lagrangian submanifolds
I cM ~>  vectors y = FH



Mirror Symmetry

A-model: B-model:

symplectic manifold
Y

complex manifold

<€ >




Mirror Symmetry

A-model:

symplectic manifold
Y

J >

* Gromov-Witten invap'i/dnb"
] j > S 7

» Fukaya category
* Quantum cohomology



Geometric Quantization

- L — M “prequantum line bundle” with
unitary connection of curvature w

wl e HA(M;2)  (i—

Quantization

* choice of polarization

M=T1U




Deformation Quantization

[F.Bayen, M.Flato, C.Fronsdal, A.Lichnerowicz, D.Sternheimer 78]

[M.Kontsevich '97]
f*hg—Z@ Z Brfg)"

graphs I
of order n

4
I
X\.z * no auxiliary choices, but:

il /1 b - no Hilbert space H
v/ - formal deformation of the
ring of functions on M




Deformation Quantization

Example: M = S* we L drAdy
dwh  z

A A A
X,V,Z —~> X, V), Z

[9(,)’/\]=h§,etc.

Lie algebra sl(2)



Examples ...

G = (simple) compact Lie group SU(2)

A = connection on a G-bundle £ — C over a

genus-g Riemann surface C E
" ‘ H

M = Mg (G,C) + space of solutions
dA+ AN A = 0

an example of a symplectic
manifold!




Examples from Gauge Theory

A flat connection on C is determined by its
holonomies, that is by a homomorphism

m(C) = G |
WA

M = Mg (G,C) + space of solutions
dA+ AN A = 0

an example of a symplectic
manifold!




Examples from Gauge Theory

A flat connection on C is determined by its
holonomies, that is by a homomorphism

7T1(C) — G

more concretely,

A\BiAT'BT ... AgBJA "B =1

t )
/‘, . & holonomies




Examples from Gauge Theory

In total, the group elements A;, B, 1,5 =1,...,g
contain 29 dim G real parameters, so that
generically, for g > 1, after imposing the equation

A\BiAT'BT ... AgBJA "B =1

and dividing by conjugation we obtain a space of
real dimension

dmM=2(g-1)dm G

.. compact, smooth™



Examples from Gauge Theory

Example: G=SU2), g=2

M = CP° nice symplectic manifold!

Note: H*(M,7Z) =7

dmM=2(g-1)dm G

.. compact, smooth™



Examples from Gauge Theory

The space M = Mqg.:(G,C) comes equipped
with a natural symplectic form:

Raoul Bott  Sir Michael Atiyah



Examples from Gauge Theory

The space M = M. (G, C) comes equipped
with a natural symplectic form:

1 .
W= / TrdA ASA What is the
4m2h | corresponding

Hilbert space H ?

Moreover, H?*(M,Z) =7

=) ) is “quantizable” only for
integer values of the level

1
k=- € Z
hE




Examples from Gauge Theory

The space M = Ma.(G,C) is compact

=) '/ is finite-dimensional, and dim H is

a polynomial in kK, whose leading coefficient
equals the volume of M:

wn

dimH = R
EXGmpleI g=2 M 1. G=SU(2)

Vol(M) = Vol(CP?3) = 13



Verlinde Formula

The space M = Myg.:(G,C) is compact

=) H is finite-dimensional, and dim H is
a polynomial in k:

| 42 g—1 k+1 | 7Tj 2—2¢g
dimH = (T) Z (smk+2>

7=1

Example: g=2 G=SU(2)

dim?—[:ék?’Jer | 161k -1

E.Verlinde



Verlinde Formula

In general, the Verlinde formula has the following form:

dmH = a, k" +a,_1k" 1 +... +ak -+ ao

UDrlgmaIAms‘[;:\_
where (for G=SU(2)§; -a@ S
r ¢ (29 — 2)™
a, =
(272)71

< ;

_g—1 V7l'(g)

] = —F7— (1+F(g+%))_q
\ ap =

: _“]} dated him to get my car repaired,
E.Verlinde but he turned out to be a quantum mechanic!”

-




Verlinde Formula

In general, the Verlinde formula has the following form:

dmH = a, k" +a,_1k" 1 +... +ak -+ ao

\ & 7 \ &
Y Y

* Modern approach to quantization offers an
interpretation of the coefficients @; via
classical geometry of moduli spaces.

1R A@\éﬁg
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“Blumenkraft, I'm afraid vou have the wrong
idea about guantum mechanics.™




Verlinde Formula

In general, the Verlinde formula has the following form:

dmH = a, k" +a,_1k" 1 +... +ak -+ ao

7 \ &

Y Y
mirror symmetry
h=1—0 > th=—1 20
have a simple interpretation classical geometry of ?
in terms of classical the moduli space for a
geometry of Y, the moduli different group G
space associated with the | -

structure group G

_ OH wow!
OH PARADIGM
- i SHIET!

. E:h._ d.u 'y ey S




Langlands duality

Galois automorphic
representations < >  representations
of G of G
UN) UN)
SO(2N) | SO(2N)
SO(2N+1) % 5 Sp(2N)
E6 E6/Z,
ES8 ES8

',
~,

Robert Langlands



Brane Quantization

A-model of Y =M. (g mpl_ex_|fica’rion of M)
H = Hom(B...B’
A /o Objects in the

Fukaya category of Y
associated to Min a
canonical way

Waiting for the

symplectic manifold >
(M, 0) H



Brane Quantization

mirror symmetry

A-model of Y = M. > B-model of Y
H = HOIIl(BCC, B/) H = EXt;k’“}(gcm g,)

A

symplectic manifold |
(1, 0) -



Brane Quantization

A-model of Y = MC:

B’= Lagrangian A-
brane supported on

MCY

5.... = coisotropic A-brane supported on Y and
endowed with a unitary line bundle L with

B

CC

T

..

4

a connection of curvature

F'= Re()

{B I



Brane Quantization

A’mOdel Of Y — M(I:: Ah e HOIII(BCC, BCC)

H = space of (B..,B’) strings
B’= Lagrangian A-
brane supported on

MCY

5. = coisotropic A-brane supported on Y and
endowed with a unitary line bundle L with
a connection of curvature

F'= Re()



Brane Quantization

A’mOdel Of Y — M([:: Ah e HOIII(BCC, BCC)

Example 1: H = space of (B..,B’) strings
M = @ real coadjoint H = representation
Or‘blT Of G]R < > Of GIR

Y = . complex coadjoint A =
orbit of G no=U(ge)/T



Brane Quantization
A-model of Y = M. :

Example 2:

M = Mgaat(G,C)int H =1spacerehrasdrreiadn
u N OfG]R — blOCkSUfW]EW model

. e: coadjoint Ay = —fua{égtc)l/éZbr'a
It of G, for the group G







