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We propose a class of Lagrangians for bosons of arbitrary spin based on

Maxwells operator
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Their distinctive feature is transverse gauge invariance:
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"Motivations: simplicity
On-shell conditions for massless particles (Fierz 1939)

0P py oy = 5’(“1 A, )
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“Motivations: simy[ici%

On-shell conditions for massless particles (Fierz 1939)
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to go off-shell...
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"Motivations: simplicity
On-shell conditions for massless particles (Fierz 1939)

590/11"%03 — 8(/“ A

pz o i)

to go off-shell...
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"Motivations: simplicity
On-shell conditions for massless particles (Fierz 1939)

590#1"'#3 — ({9(”1 A

n2 .- ,LLS)

to go off-shell...

oo~V
0 Aauz peq = 0

87 S
A a/,l/?) .../'LS—l - O

00 Yy -, can be compensated only by 00 (1, 0% Vs - o)

e

—_—

— — O Py -ps — a(,ul 0 Paps - ps) T~
minimal building-block for any off-shell formulatior ’
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“Motivations: comjaan’ng intzmcting ﬁsp theories

=» Higher-spin interactions are mainly understood for the
class of symmetric tensor;

=>» we would like to get some 1nsight into more general
classes of particles, (tensors with mixed symmetry) e.g.
to better compare with String Theory.
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“Motivations: comyan’ng intzmcu’ng ﬁsy theories

=» Higher-spin interactions are mainly understood for the
class of symmetric tensor;

=>» we would like to get some 1nsight into more general
classes of particles, (tensors with mixed symmetry) e.g.
to better compare with String Theory.

In (Anti)-de Sitter space-time free Lagrangians
known only for special cases
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Antecedents: Finstein 1919

Equations of motion o T 1 1
for unimodular gravity: .

®* alternative view of cosmological constant (via Bianchi identity)
®* keeping g = const = transverse gauge symmetry for the linear theory

o> keeping huv traceful = scalar-tensor theory of gravity

Einstein ’19; van der Bij, van Dam, Ng '82, Buchmuller, Dragon '88, Unruh ’88, Henneaux, Teitelboim 89, ...
Alvarez et al. 05 - '12
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Antecedents: Finstein 1919

Equations of motion o T 1 1
for unimodular gravity: .

®* alternative view of cosmological constant (via Bianchi identity)

®* keeping g = const transverse gauge symmetry for the linear theory

»@ping h tmcef@ = scalar-tensor theory of gravity

Einstein ’19; van der Bij, van Dam, Ng '82, Buchmuller, Dragon '88, Unruh ’88, Henneaux, Teitelboim 89, ...
Alvarez et al. 05 - '12

(N
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g 1.

Lagrangians




Symmem’c tensors, ﬁat Bﬁgs

&% Consider the Lagrangian:

1
L=gSeMg

where the Maxwell operator is defined as:

M =0 - 00-

Under dp = 0A one finds, up to total derivatives 0L ~ 0-0-¢d-A

simplest choice for gauge invariance:

0o-A =0
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Symmem’c tensors, ﬁat Bﬁg\

&% Consider the Lagrangian:

1
L=gSeMg

where the Maxwell operator is defined as:

M =0 - 00-

Under dp = 0A one finds, up to total derivatives 0L ~ 0-0-¢d-A

simplest choice for gauge invariance:
0-AN=20

traceless ¥ and \ : irreducible spin s

Skvortsov- Vasiliev ‘07

—> No need for trace constraints:

traceful Pand A : reducible spin s:
s,s-2,s-4, ...
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%ixeaf—symmeufy WTLSOTS,JLTOLT Bég_\

Notation:

avold space-time indices as far as possible

here: only family indices

== Sp,ul...,usl;l/l...uSQ;--- > 2
— a(,u”i ¢---3M§---Méi+1)5--- —> 0 Q
0" i 0
- SD"';A’LL%”"LL?%: e —> i ¢
A | | T
o SO, T ,u’gz ;...;A,u%...,ugj . 7 ij ¥

¥ can be GL(D)-reducible, GL(D)-irreducible or O(D)-irreducible
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%ixeoﬁsymmetry tensor S,f[df Bﬁgs

According to our general scheme, we start with a simple trial Lagrangian

1

L=5p[@—-0"0)p=geMy

1
2

and compute the variation of the Maxwell operator:
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%ixeo[—symmetry tensor s,ﬁat Bﬁgs

According to our general scheme, we start with a simple trial Lagrangian

1

L=5p[@—-0"0)p=geMy

1
2

and compute the variation of the Maxwell operator:

/" the simplest condition for invariance "\
\ Involves symmetrised divergences
of the parameters

Computation of d.of. from generalised light-cone gauge fixing
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%ixecf—symmetry l?ﬂSOTS,ﬁCLl' Eﬁg\

let us compare with irreducible case:

Transverse-invariant Labastida
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%ixecf—symmetry I?YLSOTS,J'TOLI' Eﬁg\

let us compare with irreducible case:

Transverse-invariant Labastida
Lagrangians
1 1 i
+ %77” " (2T T — Ty (1 Ty, ) Fo

(N families) (2 families (1))
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%ixeaf—symmetry WﬂSOTS,ﬁOLT Bﬁg_\

let us compare with irreducible case:

Transverse-invariant

1

(N families)

= M@:(D—@iﬁi)gp

(Lagrangian equations)

Labastida
Lagrangians
1 1 .
£ — — . _ nu T’L
290{]: 277 JF
1 .
+ %77” " (2T T — Ty (1 Ty, ) Fo

(2 families (!))

Equations of motion

(non-Lagrangian equations)
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%ixeaf—symmetry WﬂSOTS,ﬁOLT Bﬁg_\

let us compare with irreducible case:

Transverse-invariant

1

(N families)

= M@:(D—@iﬁi)gp

(Lagrangian equations)

Labastida
Lagrangians
1 1 .
£ — — . _ nu T’L
290{]: 277 J‘;E
1 .
+ %77” " (2T T — Ty (1 Ty, ) Fo

(2 families (!))

Equations of motion

(non-Lagrangian equations)

Constraints

TijAry =0

T(z'j Tkl)@ =0
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Symmem’c tensors, AdS Eﬁg

Our starting point

Me=(0-VV:)p, with

as usual, gauge invariance requires an additional term:

Myp=Mgp— — {[(s—2)(D+s-3) —s]p— 290"}

the Lagrangian 1s simply

1
L = 5 SDMLSpa
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%ixecf—symmetry tensors, AdS Bﬁg

In the case of mixed-symmetry tensors on (A)dS there 1s a new phenomenon
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%ixecf—symmetry tensors, QZ(C[S 6@9

In the case of mixed-symmetry tensors on (A)dS there 1s a new phenomenon

let us consider the two-family case, for simplicity

(p,LLl"',u'Sayl'”V’l" — (P/J'87V’r‘ 690/1187V7" — leJA-,LLS_]_,Vr _I_ vl/}\us;’/’r’—l

(M S0) Hsy Vr = DSO,UJSH/T o Vﬂaa SO(X,UJS—LVT o vVaa Splusao”/r—l
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f?\/lixecf—symmetry tensors, QZ(E[S 6@9

In the case of mixed-symmetry tensors on (A)dS there 1s a new phenomenon

let us consider the two-family case, for simplicity

Sp,Ual”',LLs,Vl”'Vr — ¢MS)VT 6@,“/87”7" — leJA-,LLS_l,Vr _I_ VV)\N.S)V’P—l

(M S0) Hsy Vr = DSO,UJSH/T o Vﬂaa (paMS—].)V’I” o vVaa Splusao”/r—l

the gauge variation of the *"Maxwell” tensor 1s

5 (M @) v, = 75Al(s = 1D +5-3) = (D425~ 3)|Vhs, o,
Hr =)D+ 7 —3) (D42 = 3)] Vo,

+exchanges betw. families + O(tr, div)}
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%ixecf—symmetry tensors, QZ(C[S 6@3

In the case of mixed-symmetry tensors on (A)dS there 1s a new phenomenon

let us consider the two-family case, for simplicity

(pul...’us’yl...yr — (P/J'87V’r‘ 690/1187V7" — leJA-,LLS_l,Vr _I_ vl/}\us;’/’r’—l

(M S0) Hsy Vr = DSO,UJSH/?" o Vﬂaa SOO‘NJS—LVT o vVaa Splusao”/r—l

the gauge variation of the *"Maxwell” tensor 1s

5 (M(p Hsy Ve M _|_ S — (D —l_ 28 —quMS—17V’P
=)D +7r — 3) — (D F2r =311% Ao s

+exchanges betw. families + O(tr, div)}
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f?\/lixecf—symmetry tensors, QZ(E[S 6@9

In the case of mixed-symmetry tensors on (A)dS there 1s a new phenomenon

let us consider the two-family case, for simplicity

Sp,Ual”',LLs,Vl”'Vr — ¢MS)VT 6@,“/87”7" — leJA-,LLS_l,Vr _I_ VV)\N.S)V’P—l

(M S0) Hsy Vr = DSO,UJSH/T o Vﬂaa (paMS—].)V’I” o vVaa Splusao”/r—l

the gauge variation of the *"Maxwell” tensor 1s

1
5(M(10),U'3,V7" — L2 S — D_|_S_3) N (D—I_QS _wﬂj\ﬂs—lpyr
— D +7r—-3)—(D+2r =3% A\ v,

+e)<1(:hanges betw. families + (’)(tt, div)}

impossible in general to compensate both terms:
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f?\/lixecf—symmetry tensors, QZ(E[S 6@9

In the case of mixed-symmetry tensors on (A)dS there 1s a new phenomenon

let us consider the two-family case, for simplicity

Sp,Ual”',LLs,Vl”'Vr — ¢MS)VT 6@,“/87”7" — leJA-,LLS_l,Vr _I_ VV)\N.S)V’P—l

(M S0) Hsy Vr = DSO,UJSH/T o Vﬂaa (paMS—].)V’I” o vVaa Splusao”/r—l

the gauge variation of the *"Maxwell” tensor 1s

1
5(M(10),U'3,V7" — L2 S — D_|_S_3) N (D—I_QS _wﬂj\ﬂs—lpyr
— D +7r—-3)—(D+2r =3% A\ v,

+e)<1(:hanges betw. families + (’)(tt, div)}

impossible in general to compensate both terms:

Alkalaev. Shaynkman,Vasiliev "05,

IOSeS ‘half"ofthe gauge_symmet]/j/ = ﬁg\/l’\f) Alkalaev, Grigoriev '09,’ | |

Zinoviev ’02,’09, Boulanger, lazeolla,

Sundell ’08, Skvortsov 09, Burdik,
Metsaev '95,’98 (talk SQS '97); Brink, Metsaeyv, Vasiliev '00 Reshetnyak ’12, . ..
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%ixecf—symmetry tensors, QZ(C[S 6@9

Keep only the BMV-parameter, and consider the variation of M for N families:

o My = (D—Vivi)QO

" MSo= — f{(D-DTA - (D-N DS, - VS )

+§ VIVIV (i A gy + ﬁ {207V idj) + ¢7S" Vi Ay — 2V @* T Ay |
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%ixecf—symmetry tensors, QZ(C[S 6@9

Keep only the BMV-parameter, and consider the variation of M for N families:

o My = (D—vivi)w

o Moo = ——{ —1)V'A; = (D= N =3) V'S, Aj — V'S7,.S% A, }

.- S VVIVGEA )+ = {QQJV(ZAJ) + g7 SP NV Ay — 2V T Ay )

At this stage we make some additional assumptions:
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%ixecf—symmetry tensors, QZ(E[S Bﬁg

Keep only the BMV-parameter, and consider the variation of M for N families:

o My = (D—vivz‘)ip

o Moo = ——{ —1)V'A; = (D= N =3) V'S, Aj — V'S7,.S% A, }

.- S VVIVGEA )+ = {QQJV(ZA]) + g7 SP NV Ay — 2V T Ay )

At this stage we make some additional assumptions:

1) the field i1s GL(D)-irreducible: S jo =0 for i<y
=
® the first line can be compensated by means of a *'mass’ term

o ViAjy =20 = Vih; =0 (second line almost = ()
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%ixecf—symmetry tensors, QZ[C[S Bég

Keep only the BMV-parameter, and consider the variation of M for N families:

o My = (D—vivi)ip

o Moo = ——{ —1)V'A; = (D= N =3) V'S, Aj — V'S7,.S% A, }

.- S VVIVGEA )+ = {QQJV(ZAJ) + g7 SP NV Ay — 2V T Ay )

At this stage we make some additional assumptions:

1) the field i1s GL(D)-irreducible: S jo =0 for i<y
=
® the first line can be compensated by means of a *'mass’ term

o ViAjy =20 — Vih; =0 (second line almost = ()

2) the field is traceless: Tijo =0

=
® the last term does not contribute to the Lagrangian
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%ixecf—symmetry tensors, QZ(E[S Bﬁg

Our final result 1s

a Lagrangian for N-family mixed-symmetry fields on AdS
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Spectrum




Hamiltonian cma[ysis for symmem’c tensors

flat bkg, any symmetry

= For >
AdS bkg, symmetric tensors

Only first-class
constraints

count # independent components of A and A
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Hamiltonian oma[ysis for symmem’c tensors

flat bkg, any symmetry

= For >
AdS bkg, symmetric tensors

Only first-class
constraints

count # independent components of A and A

—,  Systematically: decompose A\, ..., in spatially-transverse parts
and exploit the constraint; for a faster counting just observe:

—

8aAo¢,u2-“,Lbs—1 — () — AO,U'Z”':LLS—l — V.AMQ”',UJS—l
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Hamiltonian omafysis for symmem’c tensors

flat bkg, any symmetry

= For >
AdS bkg, symmetric tensors

Only first-class
constraints

count # independent components of A and A

—,  Systematically: decompose A\, ..., in spatially-transverse parts
and exploit the constraint; for a faster counting just observe:

—

8aAa,u2-“,us—1 — () — AOMZ"'Ms—l — V.A,UZ"',UJS—l

count twice Ny ...i._, : their time derivatives are independent

count once Mo s - ., their time derivatives are not independent
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Hamiltonian omafysis for symmem’c tensors

flat bkg, any symmetry

= For >
AdS bkg, symmetric tensors

Only first-class
constraints

count # independent components of A and A

—,  Systematically: decompose A\, ..., in spatially-transverse parts
and exploit the constraint; for a faster counting just observe:

—

8aAa,u2-“,us—1 — () — AOMZ"'Ms—l — V.A,UZ"',UJS—l

count twice Ny ...i._, : their time derivatives are independent

-
count once No - .4 their time derivatives are not independent

D (D +1 D—1)(D -2

e.g. spin 2: ( 5 ) 2(D—1) — 1 = ( )2( )

h o A, + A Ao graviton + scalar
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%ixecf—symmetry on AdsS:
ﬁ’M\/-}aattem & gauge-per-gauge symmetry Ereaﬁings

P = Pup,v
For simplicity, consider a {2, 1} field J ; s.t.

1
00 P ppv = Vulhu v+ Vo, — §vu)‘uv
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For simplicity, consider a {2, 1} field ]

fMixecf—symmetry on AdsS:

ﬁ‘M\/-]oattem & gauge-per-gauge symmetry Ereaﬁings

P = Pup,v
S.t.
1
00 P ppv = Vulhu v+ Vo, — §Vu)‘uv

Besides the impossibility to keep both gauge invariances unbroken on AdS there 1s
a deeper 1ssue:
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fMixecf—symmetry on AdS:
ﬁ‘M\/-]oattem & gauge-per-gauge symmetry Breaﬁing\

P = Pup,v
For simplicity, consider a {2, 1} field J ; s.t.
1
00 P ppv = Vulhu v+ Vo, — §Vu)‘uv

Besides the impossibility to keep both gauge invariances unbroken on AdS there 1s
a deeper 1ssue:

gauge-per-gauge invariance-breaking

5A’u,y — vue,u _ v,uel/
>> 0P up,v ~ [V, Vo0,
ONy, = —2V, 0,
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fMixecf—symmetry on AdS:
f‘M\/-Joattem & gauge-per-gauge symmetry Breaﬁing\

P = Pup,v
For simplicity, consider a {2, 1} field J ; s.t.
1
00 P ppv = Vulhu v+ Vo, — §vu)‘uv

Besides the impossibility to keep both gauge invariances unbroken on AdS there 1s
a deeper 1ssue:

gauge-per-gauge invariance-breaking

5A,LL,Z/ — VVH,LL T v'uel/
g4 0P pp, v ™~ [vuv VV]HM
SNup = —2V,0,,

In order to " 'neutralize™ the effect of 0, on the initial {2,1} field
we promote 1t to a gauge parameter for a new field:
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fMixecf—symmetry on AdS:
f‘M\/-Joattem & gauge-per-gauge symmetry Ereaﬁing\

P = Pup,v
For simplicity, consider a {2, 1} field J ; s.t.
1
00 P ppv = Vulhu v+ Vo, — §vu)‘uv

Besides the impossibility to keep both gauge invariances unbroken on AdS there 1s
a deeper 1ssue:

gauge-per-gauge invariance-breaking

5A,LL,I/ — VVH,LL T v'uel/
g4 0P pp, v ™~ [vuv VV]HM
SNup = —2V,0,,

In order to " 'neutralize™ the effect of 0, on the initial {2,1} field
we promote 1t to a gauge parameter for a new field:

unitary choice

Two options for fields , ¢ 4 .
h .. uYuv . . .
whose variation non-unitary choice

Monday, May 28, 12



fMixeo[—symmetry on AdS: Stuecﬁe[ﬁerg Lagmngiam

We want to find a Lagrangian for the
BMV multiplet s.t.:

— it is a smooth deformation of the corresponding flat,
transverse-invariant Lagrangians, including possible
deformations of transversality constraints

—> the overall gauge-invariance of the system is the same
as its flat counterpart, including all gauge-per-gauge

e

|
{F o
BMYV multiplet
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fMixeo[—symmetry on AdS: Stuecﬁe[ﬁerg Lagmngiam

We want to find a Lagrangian for the

BMV multiplet s.t.: 0 )
— it is a smooth deformation of the corresponding flat, | |
transverse-invariant Lagrangians, including possible o

deformations of transversality constraints

—> the overall gauge-invariance of the system is the same BMYV mult iplet
as its flat counterpart, including all gauge-per-gauge

: (z)(M__) () POV
Lagrangian — Z © + L ®
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fMixeo[—symmetry on AdS: Stuecﬁe[ﬁerg Lagmngiam

We want to find a Lagrangian for the
BMV multiplet s.t.: AR

— it is a smooth deformation of the corresponding flat, JI |
transverse-invariant Lagrangians, including possible
deformations of transversality constraints

—> the overall gauge-invariance of the system is the same BMYV mult iplet
as its flat counterpart, including all gauge-per-gauge
1 c ~
Lagrangian — Z ot (M - —) @) 4 T PV - )
1 &
SOELOA)L,V =V Au v + VoA — §Vu>‘uv + T Vo, V&,

Gauge transformations — 1)
0 T Vilp + 7 Auu
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fMixeo[—symmetry on AdS: Stuecﬁe[ﬁerg Lagmngiam

We want to find a Lagrangian for the
BMV multiplet s.t.: AR

— it is a smooth deformation of the corresponding flat, JI |
transverse-invariant Lagrangians, including possible )
deformations of transversality constraints

—> the overall gauge-invariance of the system is the same BMYV mult iplet
as its flat counterpart, including all gauge-per-gauge
C ~

Lagrangian — Z ot (M - —) @) 4 T PV - )

1 &

SOELOA)L,V =V Au v + VoA — §Vu>‘uv + T Vo, V&,
Gauge transformations — 1)
0 T Vilp + 7 Auu

Gauge-per-gauge —— 0N, =V, 0, =V, 0,, 00X, =-2V,0,, 0§, = Ze“
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fMixeo[—symmetry on AdS: Stuecﬁe[ﬁerg Lagmngiam

We want to find a Lagrangian for the
BMV multiplet s.t.: AR

— it is a smooth deformation of the corresponding flat, JI |
transverse-invariant Lagrangians, including possible )
deformations of transversality constraints

=> the overall gauge-invariance of the system is the same BMYV mult iplet
as its flat counterpart, including all gauge-per-gauge
C ~
Lagrangian — Z ! (M - —) @) 4 G PV - )
1 &
SOELOA)L,V =V Au v + VoA — §Vu>‘uv + T Vo, V&,
Gauge transformations — 1)
590## = Vulu + 7 Aup
b
Gauge-per-gauge —— 0N, =V, 0, =V, 0,, 00X, =-2V,0,, 0§, = Ze“
k
- —Aa + — €, =0
Constraints e ) L S
Ve 5 o« =0
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r?\/lixec[—symnfwt“ry on AdS: Stuecﬁefﬁerg Lagmngiam

We want to find a Lagrangian for the
BMV multiplet s.t.: AR

— it is a smooth deformation of the corresponding flat, JI |
transverse-invariant Lagrangians, including possible )
deformations of transversality constraints

—> the overall gauge-invariance of the system is the same BMYV mult iplef
as its flat counterpart, including all gauge-per-gauge
C ~
Lagrangian — Z ! (M - —) @) 4 G PV - )
(0) 1 B
0Py =V Au v+ Vi Aup — §Vu)‘/w T E[VV,VM]@L
Gauge transformations — 1)
590## = Vulpy + 7 Aup
b
Gauge-per-gauge —— 0N, =V, 0, =V, 0,, 00X, =-2V,0,, 0§, = Ze“
k
- —Aa + g, =0
Constraints — DAY
VO‘SQ =0
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fMixecf—symmetry on AdsS:

gauge—ﬁxing to transverse-invariant actior.

Last step: show that the Stueckelberg Lagrangian can be gauge fixed to the
transverse-invariant one
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fMixecf—symmetry on AdsS:

gauge—ﬁxing to transverse-invariant actior.

Last step: show that the Stueckelberg Lagrangian can be gauge fixed to the
transverse-invariant one

1 B
ELO,L)L,V — V,MA,M,V + VV)‘,M,M N §v,u>\,ul/ T Z[vuavﬂ]gu

0¢
Gauge transformations — 1) v
0P yp = u€u+z)‘uu
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fMixecf—symmetry on AdsS:

gauge—ﬁxing to transverse-invariant actior.

Last step: show that the Stueckelberg Lagrangian can be gauge fixed to the
transverse-invariant one

(V0 Vi,

%) = V€, + A4 upto GpG leaving it invariant

1
0 = VMAM v+ Vo dun = 5 Vi Ay +

oy v

Gauge transformations — {
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Comments & Conclusions

Symmetric tensors: 1in the traceful case — reducible spectrum: spin s, s-2, . . .
~via a suitable field redefinition the Lagrangian diagonalises:

£ = ¢8 + 03_2 ¢5_2 + 03—4 ¢8—4 S OS—2k ¢S—2]€ + -

S.t.
1 1 5]
L = 5 QOMQO — § bk,s,D ¢S—2]€ M¢S—2]€
k=0
where . 5. =0 =>  block-diagonal single-particle Lagrangians
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Comments & Conclusions

Constrained gauge parameter <—> partial gauge-fixing

Fronsdal/Labastida: Minimal extensions

F — A=F -390«

Transverse-invariant, tensionless limit of free Open
symmietric tensors: String Field theory action
]. 2 S ~
L=50Mp+200°D —2(, |DMD

unconstrained counterpart of mixed, AdS Lagrangian?
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C [oseﬁy directions
=>  Reducible description of mixed-symmetry fields on (A)dS
=>  Fermions
=>  Massive & partially massless reps.

=>  (cubic) vertices & their relation to triplet interactions
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