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Plan of the talk

1. Superconductivity with pseudogap and effective
spin-1/2 model

2. Bethe lattice model of quantum phase transition.
Critical lines from the analitical solution

3. Level statistics on small random graph: exact
numerical diagonalization.

4. Summary of results
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SC side: local tunnelina conductance

spectral signature of localized Cooper pairs in disordered superconductors.
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Superconductive state with a pseudogap: Fermi-level in the localized band

Superconductive state near SIT is very unusual:

The spectral gap appears much before (with T decrease) than
superconductive coherence does

Coherence peaks in the DoS appear together with resistance
vanishing

Distribution of coherence peaks heights is very broad near SIT 3



Single-electron states suppressed by
pseudogap Ap,>> T, 7 wg BT,
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Single and two-particle energy gaps across the disorder-driven
superconductor-insulator transition

Karim Bouadim., Yen Lee Loh, Mohit Randeria, and Nandini Trivedi
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FIG. % Imaginary part of the dynamical pair sus- )
coptibility P jwi/w at T = 0,12, averaged over 10 disorder
realimtions at three disorder strengths. Ermor bars represent



S-1-T: Third Scenario

e Bosonic mechanism: preformed Cooper pairs +
competition Josephson v/s Coulomb— S I T inarrays

e Fermionic mechanism: suppressed Cooper attraction, no
pairing—SM T
e Pseudospin mechanism: individually localized pairs
- S1T Inamorphous media
SIT occurs atsmall Z and lead to paired insulator

How to describe this quantum phase transition ?
Bethe lattice model is solved

Phys. Rev.Lett. 105, 037001 (2010)

L.loffe, M. Mezard
Phys.Rev. B 82,184534 (2010)
M. Feigelman, L.loffe, M. Mezard
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Distribution function for the order parameter

General recursion: B = - Z +£L tanh 31/ Bf + &7 .
Linear recursion (T=T)
By = (g/K) Y (Bi/&) tanh(5g) . P(B) — By
& d Bl+-i-'::

Laplace transform satisfies the equation:

o= [[laer (5=%)]

Solution in the RSB phase:  P(g) =1 — As® with 2 < 1

| . [ dE { g tanh(FE)\ T _
Zh./ : (I{ : = gee /%) = K

g s m = 1—eg.

1 T
d& tanh™ 3& q
i ? ET ].11 E—ﬁtﬂ.ﬂh 3C = D

Diverging 1St moment




Vicinity of the 0.01 | RS
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FIG. 2: Main panel: phase diagram in plane (g, 1') for K = 4. Full hnes show the critical tem-
perature as function of g. The low temperature phase 15 superconducting, the lugh temperature
phaze 13 msulating. The top curve 15 the naive mean-field prediction which gives the correct result
above Thop = 00207, The bottom curve 1z the result of the correct analy=iz on the Bethe lattice,
mcluding the RSB effects in the DF problem. which cecur at temperatures T' < Trgp. The insert
shows the phase diagram as function of K for g = 01L129. For this value of g the replica symmetrc
solution gives K-mdependent transition temperature T, = 0.001; this value roughly correspond
to the experimental situation in disordered In) films (see section V1), The prediction of rephea

KP5E ~ §. For smaller K the transition temperature starts

symmetric theory 18 correct for K =
to drop. the quantum critical pomt corresponds to K, ~ 2.2, Notice that in a numencally wide

regime the replica svmmetry 15 broken but the stfect on transition temperature 1= small.



Insulating phase: continuous
v/s discrete spectrum ?

Consider perturbation expansion over M;; in H below:

H=2 Z £is7 — Z ﬂ-ﬂ;j{gfsf CHC
2 17

Within convergence region the many-body spectrum is
gualitatively similar to the spectrum of independent spins

!

No thermal distribution, no energy transport,
distant regions “do not talk to each other”




Recursion relations for level widths

I; = (2g9/K)° Z

5{&.}]. Spectral function of external noise

We look for the distribution function of the form

]_-'-!1
['B+1

Wil = where 'y, < I' < I' .,
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Threshold energy at T=0
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.. xf oY 9o 1f(2eg)
Full band localization K*(g) = 2ge

® =1 £(g) = 2eg

Now set T>0. What happens to level width
at low excitation energies ? 11



Threshold for activated transport

Nonzero line-width appears above (0. K) = 2eq)H/es (1 ) % ) 1/eq
threshold frequency only: :

[P (w) =~ To(w) =~ e Ve%exp (_ w1 ) Is is O result
w — W

C W
Wl = 5 n .
eleg)Pl — K/K,

Nonzero activation energy for transport of pairs
IS due to the absence of thermal bath at low @

Nonzero but low temperatures: (W, T) &~ max ((T), T'y(w))

Activation
law

7 29\* 4/TwieVes (T
LSha W Ry o (T
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Phase diagram

Major feature: green and red line
‘Temperatur)e meet at zero energy

Energy What else could
one expect?

Hopping insulator / gyperconductor
Full localizatign:
Insulator with
Discrete levels .
MFA ling"

9c



Phase diagram-version 2

Here green and red line do not meet
' Temperatute ~ at Z€ro energy

Energy Do gapless excitation exist WITHOUT Long-ra
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Phase diagram-version 3

‘ Here green and red line
Temperature Cross at non-zero energy:
Energy first-order transition??
o4 l
i t‘i ﬂ':‘ns 1
ip i *""1..:1. -
r T 8 ; O+ =
2 :’.l" & il
Full localization: ;{ i
Insulator with W DR st

Discrete levels

Superconductor
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Mayjor results from Bethe lattice study

- Full localization of eigenstates with

E~ W at weakest coupling between
spins, g<g* (or K<K%*(Q))

- No intermediate phase without both
order parameter and localization of low-

energy modes

Questions:

1) what about highly excited states with E >> W

2) how universal is the absence of intermediate phase ?
3) How to avoid the use of Bethe lattice ?

16



Different definitions for the
fully many-body localized state

1. No level repulsion (Poisson statistics of the full
system spectrum)
2. Local excitations do not decay completely
3. Global time inversion symmetry is not broken
(no dephasing, no irreversibility)
4. No energy transport (zero thermal conductivity)
5. Invariance of the action w.r.t. local time
transformations t—t+ o(t,r):
d o(t,r)/dt = ¢ (t,r) — Luttinger’s gravitational potential

17



Different physical properties of the excitations at low and high energies in the
infinite system are reflected in different statististical properties of the spectra
of finite systems at F < &, and at £ = &. Intuitively, if the eigenvectors
are extended as expected for the state where local excitations decay, they are
subject to inter-level repulsion. Conversely, if the eipenvectors are localized,
eigenvalues corresponding to excitations localized in different parts of the system
are independent and Poisson distribution of levels is expected. To show it.
consider a small perturbation of the Hamiltonian that controls the dvnamiecs of
a peneric gquantum svatem in thermodynamic limit:

H — H(1+(t,z)) (1)

where @(t,x) is arbitrary slow function of coordinates and time. The small
perturbation (1) results in the slow (adiabatic) motion of energy levels £ ().
In the absence of level repulsion, different levels cross without affecting each
other. so that this motion leads only to the total phase of the wave function.
Because the field ¢(t, ) (which is similar to the gravitational potential[11]) is
conjugated to the energv density, the absence of response to it implies absence
of the energy flux. An excitation with energy AFE localized around point z
acquires phase exp —iAE@(t, ) due to perturbation (1); in contrast, a delocal-
ized excitation becomes a superposition of the excitations. Thus, the absence of
the effect of this perturbation implies that excitations are localized and do not
decay. We conclude that the absence of level repulsion implies the localization



| evel statistics: Poisson v/s WD

e Discrete many-body spectrum with zero
level width: Poisson statistics

e Continuous spectrum (extended states) :
Wigner-Dyson ensemble with level
repulsion

V.Oganesyan & D.Huse

Phys. Rev. B 75, 155111 (2007)
Model of interacting fermions
(no-conclusive concerning

sharp phase transition) 19



Numerical results for random Z=3 graph,
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Fig. 2: The average {ry) that distingnishes Wigner-Dveon and Poisson distri-
butions (values of {ry} corresponding to these distributions are shown
by dashed lines). The lett panel shows the statistice of the low-energy
excitations m the energy interval (Egs, Ege + 1.5) as a function of the
transverse mmteraction constant, J*¥ for the Z = 3 random graph with
bandwidth W = 1. The middle panel shows smmlar results for interme-
diate energies, and the nght panel corresponds to high energes, close
to the center of the many-body spectrum. Each data point represents
the average over N, = 2000, 200, 100 and 60 disorder realizations for
Ny, = 14, 16, 18 and 20 respectively. A large (exponential] increasze n
the mumber of states 1mplies that larger samples require less averaging
over realization to aclieve the same aceuracy.

1 J.=0.061
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Role of J, § S interaction

Hxy = —EE&HE —

(23]

5

L

$ =) XY (stsy + 57 s])
(27)

L] L]
Fawws = :EF.E'_-1.=|

lawe -rl |E.-|-'I.!I l:_-?.!u:|

wesls ¢ <13, 0,5]

The average {r;} 1 the presence of wealk lonmtudinal spin coupling J**
tor low energy levels (left panel), mtermediate energpes (middle panel)
and center of the many body band (rght panel). Even a small conphng
J*% = (1.1 has a large effect, 1t slutts the transition to much smaller values
of the transverse coupling g. These results were obtained by averagpng
over the same number of realizations as 1in Fig. 2
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Temperature-controlled transition to the state with zero level
widths and zero conductivity (Basko, Aleiner & Altshuler 2006) 21



Original model: XY exchange + transverse field

G e Iy
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Full model with S,-S, coupling

.'3-1.?13 vl bl r.:i.

['. = (2g/K JEZ Z -

S
k(i) &5 (-..J.J' = EE&) Iz Fﬁ

Summation over large number of configurations with different

éj makes It easier to meet resonant conditions )



Phase 1.4
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FPhase diagram m the temperature - couphng constant plane for the
model (2) with & = 3 (K = 2, obtamed from the solution of cawnty
equations and confirmed by mumerical simulations. The strength of the
s"8* mnteraction 15 J** = (.1, n the absence of this interaction the lhine
separating wealk and strong mnsulators becomes vertical. In the weal in-
sulator, excitations at sufficiently high energies can decay even at zero
temperature., A non-zero temperature results in non-zero relaxation of
all exmitations, even the ones of lowest energy. In contrast, in the strong
mnsulator, no excitation with intensive energy can decay. As the interac-
tlon constant 18 decreased, the temperature separating these phases goes
to infinity at g = gr. At smaller couphing g < gy, all excitations, even
those with extensive energy remain locahized. The value of gy /= 0,042 15
approcamately equal to 0.30g,. The ratio gr/g. = 0.3 12 10 good agree
ment with the results of the direct diagonahzation on small graphs, as
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Conclusions

New type of S-1 phase transition is described

On insulating side activation of pair transport is
due to ManyBodyLocalization threshold

Results from level statistics studies support general

shape of the phase diagram, but the possibility of
Intermediate phase cannot be excluded In this way

Interaction in the “density channel” is crucially
Important for the shape of the phase diagram

24



Open problems

- Analitical study of energy localization In
Euclidean space or RGM: order parameter ?
anything to do with compactification of space and black holes ?
- Is it possible to modify the model in a way
to find an intermediate phase or 15t order?
- How to calculate electric and thermal
conductivities directly within recursion
relations approach?
- rf- stimulated conductivity: search for
threshold effect

25
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Fractal superconductivity near localization threshold

Annals of Physics 325 (2010) 1390-1478

M.V. Feigel'man*®, LB. loffe *“%* V.E. Kravtsov*®, E. Cuevas'

We develop a semi-quantitative theory of electron pairing and result-
ing superconductivity in bulk “poor conductors” in which Fermi ener-
gy Eg is located in the region of localized states not so far from the
Anderson mobility edge E.. We assume attractive interaction between
electrons near the Fermi surface, We review the existing theories and
experimental data and argue that a large class of disordered films is
described by this model.

Our theoretical analysis is based on analytical treatment of pairing cor-
relations, described in the basis of the exact single-particle eigenstates
of the 3D Anderson model, which we combine with numerical dataon
eigenfunction correlations. Fractal nature of critical wavefunction's
comrelations is shown to be crucial for the physics of these systems.
We identify three distinct phases: ‘critical’ superconductive state formed
at Ez= E,, superconducting state with a strong pseudo-gap, realized
due to pairing of weakly localized electrons and insulating state real-
ized at Eg still deeper inside a localized band. The ‘critical’ supercon-
ducting phase is characterized by the enhancement of the transition
temperature with respect to BCS result, by the inhomogeneous spatial
distribution of superconductive order parameter and local density of
states. The major new feature of the pseudo-gapped state is the pres-

[2] M.Ma, P.A. Lee, Phys. Rev. B 32 (1985) 5658.
[3] A. Kapitulnik, G. Kotliar, Phys. Rev. Lett. 54 (1985) 473;
G. Kotliar, A. Kapitulnik, Phys. Rev. B 33 (1986) 3146.

ence of two independent energy scales: superconducting gap A, that is
due to many-body correlations and a new “pseudo-gap” energy scale
Ap which characterizes typical binding energy of localized electron
pairs and leads to the insulating behavior of the resistivity asa function
of temperature above superconductive T. Two gap nature of the
pseudo-gapped superconductor is shown to lead to specific features
seen in scanning tunneling spectroscopy and point-contact Andreev
spectroscopy. We predict that pseudo-gapped superconducting state
demonstrates anomalous behavior of the optical spectral weight. The
insulating state is realized due to the presence of local pairing gap but
without superconducting correlations; it is characterized by a hard
insulating gap in the density of single electrons and by purely activated
low-temperature resistivity In R(T)~ 1/T.

Based on these results we propose a new “pseudo-spin” scenario of
superconductor-insulator transition and argue that it is realized in a
particular class of disordered superconducting films, We conclude by
the discussion of the experimental predictions of the theory and the
theoretical issues that remain unsolved.

[4] L.N. Bulaevskii, M.V. Sadovskii, Pisma ZhETF 39 (1984) 524;
L.N. Bulaevskii, M.V. Sadovskii, ]. Low Temp. Phys. 59 (1985) 8§9;
M.V. Sadovskii, Phys. Rep. 282 (1997) 225.

Competition between superconductivity and Anderson localization was studied originally in mid-80s
|2-4]. Their major conclusion was that Anderson theorem is valid and superconductivity survives provided

is satisfied.

that the condition T.=0;

We will show below that the analysis presented in [2-4] is not complete in two important respects.

Disorder always leads to spatial fluctuations of

parameters which enter the Ginzburg-Landau

functional; the major effect is due to fluctuations of a(T,r). Universal mesoscopic fluctuations (which

provide a lower bound for the strength of this effect) were studied in Ref. [4] for usual disordered

28

superconductors and more recently in [31] for 2D films with the strong Finkelstein effect. Here we follow



FHYSICAL REVIEW B 82, 184534 (2010}
Ei-:

superconductor-insulator transition and energy localization

M. V. Feigel'man.' L. B. Ioffe,” and M. Mézard®
VLD Landau Institute Jor Theoretical Physics, Kosveln sir 2, Moscow [19334, Russia

*Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd.,

Piscataway, New Jersev 08854, USA
SUMR F626, LPTMS, CNRS-Université Paris-Sud, Orsav Cedex F-21405, France
(Received 2 July 2010; revised manuscript received 9 November 2010; published 29 November 2010}

We develop am analytical theory for generic disorder-driven quantum phase transitions. We apply this
formalism to the superconductor-insulator transition and we briefly discuss the applications to the order-
disorder transition in quantum magnets. The effective spin-% models for these transitions are solved in the
cavity approximation which becomes exact on a Bethe lattice with large branching mumber K% 1 and weak
dimenzionless coupling o< 1. The characteristic feature of the low-temperature phase is a large self-formed
inhomogeneity of the order-parameter distribution near the critical point K == K _{g), where the critical tempera-

ture T, of the ordering transition vanishes. We find that the local probability distribution P{B) of the order
parameter B has a long power-law tail in the region where B i= much larger than its typical value 8,. MNear the
quantum-critical point, at K— K. (g). the typical value of the order parameter vanishes exponentially, By
o g~ SR while the spatial scale N of the order parameter inhomogeneities diverges as [K —K.(2)T% In
the disordered regime, realized at K=K (g) we find actually two distinct phases characterized by different
behavior of relaxation rates. The first phase exists in an intermediate range of K™ig)<<K<K_{g). It has two
regimes of energies: at low excitation energies, w< w4 K.g), the many-body spectrum of the model is discrete,
with zero-level widths, while at w>w, the level acquire a nonzero width which is self-generated by the
many-body interactions. In this phase the spin model provides by itself an intrinsic thermal bath. Another phase
is obtained at smaller K< K (g), where all the eigenstates are discrete, corresponding to full many-body
localization. These results provide an explanation for the activated behavior of the resistivity in amorphous
materials on the insulating side near the superconductor-insulator transition and a semiguantitative description

of the scanning tunneling data on its superconductive side.
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Localization of preformed Cooper pairs in
disordered superconductors

Benjamin Sacépé"2*™, Thomas Dubouchet'’, Claude Chapelier', Marc Sanquer', Maoz Ovadia?,
Dan Shahar?, Mikhail Feigel'man® and Lev loffe?

The most profound effect of disorder on electronic systems is the localization of the electrons transforming an otherwise
metallic system into an insulator. If the metal is also a superconductor then, at low temperatures, disorder can induce a
pronounced transition from a superconducting into an insulating state. An outstanding question is whether the route to
insulating be haviour proceeds through the direct localization of Cooper pairs or, altematively, by a two-step process in which
the Cooper pairing is first destroyed followed by the standard localization of single electrons. Here we address this question
by studying the local superconducting gap of a highly disordered amorphous superconductor by means of scanning tunnelling
spectroscopy. Our measurements reveal that, in the vicinity of the superconductor-insulator transition, the coherence peaks
in the one-particle density of states disappear whereas the superconducting gap remains intact, indicating the presence of
localized Cooper pairs. Our results provide the first direct evidence that the superconductor-insulator transition in some
homogeneously disordered materials is driven by Cooper-pair localization.
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Mucvma 8 XIT®, rom 39, ewmn. 11, cTp. 524 — 527 10 uwonn 1984 2.

JTOKAJTM3ALIHA H CBEPXITPOBOIUMOCTD
JIL.H Byaaesckuii, M.B. Cadosckuii

IMoxa3ano, 4YTo CHCTEMA, HAXOAAMAACH B COCTOAHHH aHOEPCOHOBCKOM NMOKanMM3auMH B HOp-
MTBHOM COCTOAHHH, MOXeT CTaTh CBEpXMApOBOMALIEH HHXe KPHTHYECKOH TEMIepaTypH Tc'
[MonyyeHs! kosdduiients! ypasHenna MmHabypra — Jlawnay s ceepXnpoBOOAMIEr?D Mnepexo-
fda B ofinacTv aHOEPCOHOBCKOR NOKWIK3IAUMA H HCCIENOBAHO MOBelleHHe BEPXHErO KPHTHYEC-

KOT0 MarHMTHOTO Nona My, B MeTwuMuecKoR M gManeKTpHYyecKo# OGNACTH B 3aBHCHMOCTH
oT cTeneHH GecnopAnka.

1

ITucema & KIT®, rom 43, eun. 2, erp. 76 — 78 25 ansaps 1986 2.

POCT MPOCTPAHCTBEHHBIX ®JIYKTYALIHA
B CBEPXTIPOBOJIHUKAX BBJIN3H NNEPEXOJIA AHIEPCOHA

JL.H.Byaaesckuii, M.B.Cadoscruii

Halinen wHTepRan TeMneparyp OKono Tc, e CHMBHEI MPOCTPAHCTBEHHBIE (IYKTYALMH
CBEpXMPOBOMSIUICIO MapaMeTpa MOPANKA, BbI3BAHHLIE MpHMecAMH. Jlanexo OT mopora aHnep-
COHOBCKOM NMOKANM3ALWH ITOT MHTEPBAJ OYeHb Y30K [0 CPaBHEHMIO ¢ MHTEPBANIOM CHITBHBIX
TEPMOMHHAMHYECKHX (IIYKTYanHH, ¥ CBepXNpPOBOMALIMA NapameTp NOpANKA eCTh CaMOYyCpel-
HEomEAca BenMuMHAa. BO6IM3H nopora nokanu3ammd GuykTyauwd H3-3a OecrnopfiiKa BeTHKH
BO Beeit ofnacTH NposABNeHNs CBepPXNPOBOIHMOCTH.

RUERRB LDV C LYY, Michael V. Sadovskii, @ World Scientific, Singapore, 2000
AND
These estimates are in complete accordance with the results of our dis-
LOCALIZATION

cussion of Ginzburg—Landau approximation [Bulaevskii L.N., Sadovskii
M.V. (1984); Bulaevskii L.N., Sadovskii M.V. (1985)] and in fact we now
have the complete qualitative picture of superconductivity in Anderson in-
sulator both for T'~ T, and T" — 0, i.e. in the ground state.
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