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Wilson loop remainder function for null polygons in the

limit of self-crossing

work with Sebastian Wuttke : arXiv:1104.2469 and 1111.6815

• Motivation and introduction

• Strategy and results

• Comparison with full analytic results

• Some details of the calculation

• Conclusions
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Introduction

Study Wilson loops in N = 4 SYM in the planar limit for special contours:

Null polygons with vertices x1, x2, . . . , xn and

edges pk = xk − xk−1, k = 1, . . . , n

These objects are of interest in its own and with respect to

the correspondence between

Wilson loops, MHV gluon scattering amplitudes and

string surfaces in AdS

Wilson loops UV divergent, scattering amplitudes IR divergent,

in dimensional regularisation ǫIR ⇔ −ǫUV
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Introduction

logW =
∑

l al
(

f(l)(ǫ)W (1)(lǫ, {s}) + C(l)(ǫ)

)

+R(a, {u}) +O(ǫ) ,

with {s} the set of Mandelstam variables skl = (xk − xl)
2 and

{u} the conformally invariant cross ratios form out of the skl.

a = g2N
8π2 , W (1)(ǫ, {s}) one loop contribution.

The blue part is the BDS structure, fixed also by anomalous conformal

Ward identities.

R is called the remainder function,

it appears for n ≥ 6 only and starts at order a2.
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Introduction

Remarkable: Single diagrammatic contrib. to logW (via non-Abelian

expo theorem) contain higher powers 1
ǫk
, k > 2

but logW has only 1
ǫ2

and 1
ǫ
.

Situation changes if contour has self-crossing (R = a2 R(2)+a3 R(3) +. . . )

R(2) ∝ 1
ǫ3

+ . . . , R(3) ∝ 1
ǫ5

+ . . .

(From now: R := logW − BDS also for ǫ 6= 0.)

⇒ interesting problem in its own

⇒ alternative aspect
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Introduction

Approach to self-crossing from a generic configuration:

The (generically) finite R develops singularities

∝ log3(1− u) for R(2)

∝ log5(1− u) for R(3)

if some characteristic cross-ratio u → 1.

Available info on R in generic configuration:

hexagon R(2): full analytic result Goncharov, Spradlin, Vergu, Volovich 2010

hexagon R(3): full symbol Dixon, Drummond, Henn and Caron-Huot, He 2011

∃ also info on symbols for higher polygons and/or explicit analytic results

for restricted configurations (2D).
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Introduction

Different self-crossing types:

a) crossing of two edges, not ∃ free conformally invariant parameter

b) touching of two vertices, ∃ one free conformally invariant parameter

pq
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Introduction

R(2) for case of touching vertices studied in our 1104.2469

This talk: Concentrate on crossing edge case, R(2), R(3) 1111.6815

Related singularities for scattering amplitudes:

touching vertices ⇔ momentum conservation for a subset of momenta

crossing edges ⇔ ∃ two opposite external momenta whose both adjacent

inner momenta become in some integration region

collinear to them,

might be relevant for double parton scattering,

e.g. Gaunt, Stirling 2011
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Strategy and Results

Use RG-equation for self-crossing Wilson loops

& input logW = BDS + R Georgiou 2009

• RG-equation with mixing under renormalisation, due to self-crossing

• Use general structure of anomalous dimension matrix

in case of null-edges Korchemskaya, Korchemsky 1994

• Book-keep the dependence on logµ2, µ RG-scale

• Concentrate on leading and nextleading power of logµ2

• µ enters only via a → aµ2ǫ,

hence one can reconstruct corresponding poles in ǫ for R(ǫ, µ, {s})
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Strategy and Results

R(2) = iπ
4

(

1
ǫ3

+ 1
ǫ2

2 log(2pqµ2X )
)

+ O(1
ǫ
) , pq > 0 ,

R(2) = −iπ
4

(

1
ǫ3

+ 1
ǫ2

2 log(2|pq|µ2X )
)

+ π2

2
1
ǫ2

+ O(1
ǫ
) , pq < 0 .

R(3) = − 7iπ
108

(

1
ǫ5

+ 1
ǫ4

3 log(2pqµ2X )
)

− π2

18
1
ǫ4

+ O( 1
ǫ3
) , pq > 0 ,

R(3) = 7iπ
108

(

1
ǫ5

+ 1
ǫ4

3 log(2|pq|µ2X )
)

− π2

4
1
ǫ4

+ O( 1
ǫ3
) , pq < 0 .

X = xy(1− x)(1− y), x, y fractions on edges p and q defining the crossing point.

Note: coefficient of nextleading pole is not conformally invariant,

OK since at ǫ 6= 0 conformal invariance broken.

Relation to singularities of generic (i.e. no self-crossing) R(a, {u})
for some special uj → 1:
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Strategy and Results

• Consider conf. slightly off self-crossing as an alternative regularisation:

distance z⊥

• Argue (heuristically) for a “translation rule”

g2l 1
ǫm

⇔ αl,m g2l logm( 1
−µ2z2⊥

), αl,m = lm−l l!
m! , (note: αl,l = 1)

• Pure geometry of near self-crossing:

log

(

1
−µ2z2⊥

)

= − log(u− 1) − log(−2pqµ2X ) + O(z2⊥), pq < 0

= − log(1− u) − log(2pqµ2X ) + O(z2⊥), pq > 0

u cross ratio formed out of the 4 endpoints of the crossing edges.

R(2) = iπ
6 log3(u− 1) + π2

2 log2(u− 1) + O(log(u− 1)) , pq < 0

= − iπ
6 log3(1− u) + O(log(1− u)) , pq > 0
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Strategy and Results

R(3) = − 7
240 iπ log5(u−1) − 3

16π
2 log4(u−1) + O(log3(u−1)) , pq < 0

= 7
240 iπ log5(1−u) − 1

24π
2 log4(1−u) + O(log3(1−u)) , pq > 0

• For R(2) full agreement with corresponding limit for result

of Goncharov, Spradlin, Vergu, Volovich

• R(3): disagreement by factor 6
7 with leading singularity from

symbolic result of Dixon, Drummond, Henn

Comparison with full analytic result

R(2) = − 1
2 Li4(1− 1

u
) − 1

8

(

Li2(1− 1
u
)
)2

+ . . . , GSVV

derived in Euclidean region, at first sight no singularity at u → 1 .
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Comparison with full analytic result

But: The three independent cross-ratios u1, u2, u3 do not fix the

conformal class of hexagon configurations.
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Comparison with full analytic result
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projection on (1,2)-plane, edges running backward and forward in time,

both a) and b) have u2 = 1.
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Comparison with full analytic result

In twisting a) to b) 1
u2

goes from 1 to 0 and back to 1, i.e.

argument of Polylogs v := 1− 1
u
: v = 0 −→ v = 1 −→ v = 0

Implementing the iε-prescription ⇒ ”reflection” at v = 1 (branchpoint of

the Li’s) is combined with encircling

Twisting moves us into second sheet of the Polylogs, there we hit loga-

rithmic singularities at v = 0, i.e. u = 1.

Lin(v + iε)− Lin(v − iε) = 2πi logn−1 v
(n−1)!
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Comparison with full analytic result

v v

0 1 0 1

pq < 0,   u −−> 1+0,   v −−> +0 pq > 0,  u −−> 1−0,   v −−> −0
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Some details of the calculation

Wa = Zab W ren
b , W1 := 〈U(C)〉 , W2 := 〈U(Cupper)U(Clower)〉 ,

U(C) := 1
N

tr P exp (ig
∫

C Aµdxµ) , Γ := Z−1µ d
dµ

Z

∣

∣

∣

∣

gbare fixed
,

µ ∂
∂µ

logW ren
1 = − Γ12

W ren
2

W ren
1

− Γ11 , β-function zero !!

(1− x)p

xp yq

(1− y)q

p−

p+q−

q+

C
upper

Clower
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Some details of the calculation

Anomalous dim. due to cusps and self-crossings for time-like or space-like

contours depend on angles ϑ, coshϑ = pq√
p2q2

, ϑ → ∞ for p2, q2 → 0.

Div. linear in ϑ to all orders, modified type of RG-equation with anoma-

lous dimensions depending linearly on logµ (µ RG-scale). Korchemsky

Γ =

(

1 0
0 1

)

Γcusp(a)

2

∑

k∈cusps, not adj. crossing

log
(

−skµ
2
)

+

(

A γ12(a)
0 B

)

,

A =
Γcusp(a)

2

(

log
(

−2pp−µ2
)

+ log
(

−2pp+µ2
)

+ log
(

−2qq−µ2
)

+ log
(

−2qq+µ2
))

,

B =
Γcusp(a)

2

(

log
(

− 2pp−xµ2
)

+ log
(

−2pp+(1− x)µ2
)

+ log
(

−2qq−(1− y)µ2
)

+ log
(

−2qq+yµ2
) )

+ γ22(a)
(

log
(

−sxyµ2
)

+ log
(

−s(1− x)(1− y)µ2
))

,

planar approximation, s = 2pq, sk = (xk+1 − xk−1)
2.
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Some details of the calculation

Z ⇔ Γ relation:

µ
d

dµ
logZ11 = Γ11 , µ

d

dµ
Z12 = Z11Γ12 + Z12Γ22 ,

µ
d

dµ
logZ22 = Γ22 , with µ

d

dµ
= µ

∂

∂µ
− 2ǫ a

∂

∂a

Z
(0)
11 = 1 , Z

(1)
11 = −nΓ

(1)
cusp

4ǫ2
− Γ

(1)
11

2ǫ
, Z

(1)
12 = −γ

(1)
12

2ǫ
,

Z
(0)
22 = 1 , Z

(1)
22 = −nΓ

(1)
cusp +4γ

(1)
22

4ǫ2
− Γ

(1)
22

2ǫ
.

Z
(2)
12 =

(2n+1)γ
(1)
12

8ǫ3
+

γ
(1)
12

(

Γ
(1)
11 +Γ

(1)
22

)

8ǫ2
− γ

(2)
12

4ǫ
.
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Some details of the calculation

Then from Wj = Zjk W ren
k and expanding logWj in powers of a

(logW ren
1 )(1) = W

ren(1)
1 = MS

[

(logW1)
(1)
]

,

(logW ren
1 )(2) = MS

[

(logW1)
(2) + Z

(1)
12

(

W
ren(1)
1 −W

ren(1)
2

) ]

,

(logW ren
1 )(3) = MS

[

(logW1)
(3) − T1 − T2

]

,

with MS
[

. . .
]

denoting minimal subtraction and

T1 := Z
(1)
12

(

1

2

(

W
ren(1)
1 −W

ren(1)
2

)2
− (logW ren

1 )(2) + (logW ren
2 )(2)

)

,

T2 :=

(

(

Z
(1)
12

)2
+ Z

(1)
12 Z

(1)
11 − Z

(2)
12

)

(

W
ren(1)
1 −W

ren(1)
2

)

.
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Some details of the calculation

• We have under control the dependence on L := log(µ2) of:

• (logW ren
1 )(1), (logW ren

2 )(1) : up to L2

• (logW ren
1 )(2), (logW ren

2 )(2) : up to L3

• the BDS contribution to (logW ren
1 )(3) : up to L2

• due to poles up to 1
ǫ3

in the Z-factors, vanishing terms up to O(ǫ3)

from
(

W
ren(1)
1 −W

ren(1)
2

)

are relevant,

and contribute up to L5

Together we find:

(logW ren
1 )(3) = MS

[

(logW1)
(3)
]

+ number ·L5 + number ·L4 + O(L3) .
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Some details of the calculation

Inserting this into the starting RG-equation for logW ren
1 and book-keep

order a3 one gets

the leading and nextleading (L5 and L4) dependence of MS

[

R(3)
]

.
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Conclusions

• In case of two crossing edges leading and nextleading UV divergence of

remainder determined by one-loop info on anomalous dimensions

• Explicit results for R(2) and R(3) in dimensional regularisation

• Treatment of higher orders seems realistic

• Studied R(2) also in case of touching vertices, here already leading

divergence requires two-loop info on anomalous dimensions

• Translation into singularities of generic remainder for the approach to

self-crossing can give checks and hints for the search to

full analytic results, similar to multi Regge limit, collinear limit, ...

• Heuristic translation rule works perfect up to two loops, gives correct

relative weight at three loops (ensuring conformal invariance)
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Conclusions

• Factor 6/7 discrepancy relative to info from symbolic results in literature

• Work in progress: direct analysis of Feynman diagrams


