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1.1. Introduction: Why « massive gravity » ?

= One way to modify gravity at « large distances »
... and get rid of dark energy (or dark matter) ?

e

m) One obviously needs a very light graviton
(of Compton length of order of the size of the Universe)




1.2. Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

Pauli-Fierz action: second order action
for a massive spin two
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and the vDVZ discontinuity

Pauli-Fierz action: second order action
for a massive spin two
fd4a:\/§Rg + m? fd4a:hu,,ha5 (77“0‘77”5 — 77“’”770‘5)
LY_}

second orderinh, =g, 1,,

@ Only Ghost-free (quadratic) action for a

massive spin twWo  Pauli, Fierz 1939 vDVZ discontinuity
(van Dam, Veltman;

(NB: h,  is TT: 5 degrees of freedom)  zakharov: wasaki 1970)

The propagators read

2p

oy a3 Qg X
popagator for  mA)  DMV(p) = s + O(p)

propagator for - m=0 D/O‘”O‘ﬁ(p) = nnipent w0 gy




2. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »

Can be defined by an action of the form | sham. Salam. Strathdee. 1971

S = [d*z\/—g PR +L ‘I_Sint[fag]a

msteln Hllbert action
for the g metrlc

Interaction term coupling
the metric g and the non
dynamical metric f

Matter action
(coupled to metric g)




2. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »

Can be defined by an action of the form | sham. Salam. Strathdee. 1971

S = [d'z\/—yg (%Rg + Lg) + Sintlf, gl,

The interaction term S;,.;[f, g], 1S chosen such that

e |t IS Invariant under diffeomorphisms
* |t has flat space-time as a vacuum
* When expanded around a flat metric

(gpv = npv T huv’ fuv = npv)
It gives the Pauli-Fierz mass term

Leads to the e.om. MZG,, = (Tu +T5,(f,9))

Matter energy-momentum tensor _ K
Effective energy-momentum

tensor ( f,g dependent)



e Some working examples

1 vT vV pOT

S = —gmiMp [ dte /F HyuHor (£747 £ 577)
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(Arkani-Hamed, Georgi, Schwartz)
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e Infinite number of models with similar properties
 Have been investigated in different contexts

 « f-g, strong, gravity » Isham, Salam, Strathdee 1971
e « bigravity » Damour, Kogan 2003

* « Higgs for gravity » t'Hooft 2007, Chamseddine, Mukhanov 2010
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e Some working examples

1 vT vV pOT

S = —gmiMp [ dte /F HyuHor (£747 £ 577)
(Boulware Deser)
1 o _vVT v oOT

Sz(j,?t — —§m2M123/d4x vV—9 HHor (g"7g"" —g""g°")

(Arkani-Hamed, Georgi, Schwartz)
Wlth H,uy — g,u,y T f,u,y

e Infinite number of models with similar properties
 Have been investigated in different contexts

e « f-g, strong, gravity » Isham, Salam, Strathdee 1971
e « bigravity » Damour, Kogan 2003

* « Higgs for gravity » t'Hooft 2007, Chamseddine, Mukhanov 2010

Generically: a 6th egree of
dagates (Boulware-Deser 1972)




— Look for static spherically symmetric solutions
with the ansatz (not the most general one)

gapdride® = —J(r)di? + K(r)dr® + L(r)r2d9?
fapdetde® = —dt* + dr® +r2dQ)?

Gauge transformation

gudrrde” = —eBdt? 4 ABGR? + R2d0?
{ _ Ry (R)
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Which can easily be compared to Schwarzschild



— Look for static spherically symmetric solutions
with the ansatz (not the most general one)

gapde’de” = —J(r)dt’ + K(r)dr® + L(r)r*d®’
fapdetde® = —di* + dr* + r?dQ’
Gauge transformation

_ Ry (R)
2

{ gudrrde” = —eBdt? 4 ABGR? + R2d0?

2
f,uz/daj'udafy — —dt2 —+ (]_ ) e_,u(R)dRz + e—M(R)RQdQQ

Which can easily be compared to Schwarzschild

Then look for an expansion in
Gy (orin Rg oc Gy M) of the would-be solution



M) R?

R%d0?

(For R <m)



gudatde” = —e"Wdt* + A AR? + R*dO7

(For R <m)

v(R) = — (1 +
A(R) = 51+

Wrong light bending!
(vDVZ discontinuity)

This coefficient equals +1
In Schwarzschild solution M



gudatde” = —e"Wdt* + A AR? + R*dO7

(ForR <m)

/(R) = — 231 +O(1)e+.. .
- with € = mTziﬁ
)\(R) — ‘|— % 73(1 ‘|‘ 0(1)6 ‘|‘ Vainshtein 1972

In « some kind »
[Damour et al. 2003]
of non linear PF

Introduces a new length scale R in the problem
below which the perturbation theory diverges!

For the sun: bigger than solar system! with R, = (Rgm~*)1/?



So, what is going on at smaller distances?

@ Vainshtein 1972

There exists an other perturbative expansion at smaller distances,
defined around (ordinary) Schwarzschild and reading:

V(R) = -8 {1 + O (R5/2/R2/2> }\ with R—5/2 2R 1/2
>~




So, what is going on at smaller distances?

@ Vainshtein 1972

There exists an other perturbative expansion at smaller distances,
defined around (ordinary) Schwarzschild and reading:

V(R) = -8 {1 + O (R5/2/R2/2> }\ with R—5/2 2R 1/2
AR) =+ {1+ 0 (/R [

 This goes smoothly toward Schwarzschild as m goes to zero

» This leads to corrections to Schwarzschild which are non
analytic in the Newton constant



To summarize: 2 regimes

Rg

V(R):—F(l—FO() .--) with 62%

N\ 1/5
Valid for R > Ry with Ry — (Rgm_ﬂ .

Standard
perturbation theory

A
\around flat space

Crucial guestion: can one join the two
regimes in a single existing non singular
(asymptotically ﬂat) solution? (Boulware Deser 72)

— =

" Expansion around Py — Rs o (B2 R
Schwarzschild v(R) = — n ( ™ ( 2R ))

. Solution Valid for R < Ry




This was investigated (by numerical integration) by
Damour, Kogan and Papazoglou 2003

@ No non-singular solution found
matching the two behaviours (always
singularities appearing at finite radius)
and hence failure of the « Vainshtein
mechanism »

(see also Jun, Kang 1986)

We (Babichev, C.D., Ziour) reinvestigated this issue
using more sophisticated methods and found solutions
featuring the Vainshtein recovery

(with the Arkani-Hamed, Georgi, Schwartz potential and a source)
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To obtain our solutions, we used the « Decoupling Limit »,
and various (asymptotic) expansions, and we first...

« shooted »

Then « relaxed »




To obtain our solutions, we used the « Decoupling Limit »,

and various (asgmptotic) expansions,/a/\\%

One crucial issue: existence of infinitely many
solutions at infinity (in the decoupling limit: we
have two different mathematical proofs of that)
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Numerical solutions (of the full non linear system) ‘
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So the Vainshtein’s mechanism does really work
even In sick theories (NB: our numerical results were
confirmed by M. Volkov) !

Solutions were obtained for very low density
objects. We did not find numerically what is
happening for dense objects (and BHS).
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3. Generic properties of horizon structure
(and some conseguences)

C.D.,T.Jacobson, CQG 2012
3.1 Formal results

Consider a theory with two metrics, g, and f

We want to investigate the consequence of one of the metrics (say Q)
to have a Killing horizon (in the static-spherically symmetric or
stationary-axisymmetric cases)

Consider first the case where the two metrics are static
and spherically symmetric

Proposition 1: Suppose the Killing vector & is null at » = ry with respect to
Guw- Then it both metrics are diagonal and describe smooth geometries at rpy.

Jr must also be null with respect to f,,, at r =rg.

l.e. both metric must have the same horizon
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When both metrics are static and spherically symmetric, they
can be put in the form (in a common coordinate system)

fuwdatde” = —J(r)dt* + K (r)dr® + r*dQ?
guodatde” = —A(r)dt* +2B(r)dtdr + C(r)dr® + D(r)d2’

Consider the scalar (assuming B=0 at the horizon)
9" fuw = JJA+ K/C +2r*/D

It must be regular at the horizon r=r,, if both metrics are regular there

But A(r,)=0, and J/A, K/C and r?/D have the same sign, so cannot cancel

mmmm)> One must have J(r,) =0

(and hence the killing horizon of g is also one for f)
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Second proof (1b)
(based on theorems by Racz and Wald 1992, 1996)

@ If a space-time has a Killing horizon, then, under rather general
assumptions, it has a « virtual » bifurcation surface.

@ More precisely:

if a space-time is static (with « t » reflection symmetry) or
stationary axisymmetric with « t-¢ » reflection symmetry, and if

the surface gravity of the horizon is non zero and constant

then

There is an extension of a neighborhood of the horizon to one
with a bifurcate Killing horizon

(i.e. a Killing horizon which contains a bifurcation surface)

(NB: this applies to any space-time without assuming
anything concerning the field equations)



@ Moreover (Racz-Wald 1996)

Any Killing invariant tensor field sharing the t or the t-¢ reflection
symmetry of the metric

can be extended globally to the enlarged space-time.




@ Moreover (Racz-Wald 1996)

Any Killing invariant tensor field sharing the t or the t-¢ reflection
symmetry of the metric

can be extended globally to the enlarged space-time.

Proof 10: If both metrics f,, and ¢, are diagonal then g,, shares the ¢
reflection symmetry of f,,. If the surface gravity of the g-horizon is nonzero,
then the Racz-Wald theorem i1mplies that both metrics can be extended to a
regular bifurcation surtace of the 9; Killing horizon for g. The scalar f,, x*x" =
J(r) vanishes at the bifurcation surtace where y/ = 0, and it cannot change
along the Killing flow, so it vanishes everywhere at » = rg.

(where x is the killing vector)

NB: This extends to the stationary-axisymmetric case



This does not preclude the existence of two geometries one with a
Killing horizon and one without....

But only implies that the non-horizon geometry cannot possess the
t-¢ (or t in the previous case) reflection symmetry

E.g.: the existence of a non zero B in the g metric can allow both
geometries to be regular at the horizon.

fudatde” = —J(r)dt* + K(r)dr* + r*dQ?

Judz’duz” = —A(r)dt* + 2B(r)dtdr + C(r)dr* + D(r)d$)?



@ This does not preclude the existence of two geometries one with a
Killing horizon and one without....

But only implies that the non-horizon geometry cannot possess the
t-¢ (or t in the previous case) reflection symmetry

E.g.: the existence of a non zero B in the g metric can allow both
geometries to be regular at the horizon.

fwdetde” = —J(r)de + K (r)dr” + r2d?
Guvdztda” = —A(r)dt* + 2B(r)dtdr + C(r)dr* + D(r)dQ?

When this is the case (i.e. when the Killing horizon is not a
Killing horizon for the other metric)

@ The bifurcation surface of the g spacetime
cannot lie in the interior of the f space-time

mm=)  Conversely, when the horizon coincide, they must
have the same surface gravity (see. e.g. M. Volkov arXiv:1202.6682 )



This can be put together as

It a Killing horizon of a metric g has a bifurcation surface that
lies in the interior of the spacetime of another metric f with the same Killing
vector, then it must also be a Killing horizon of f., and with the same surface
gravity.
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3.2 Some Consequences

3.2.1. (Standard) Vainshtein mechanism
does not work for black holes

Indeed, in the standard way of looking at Vainshtein mechanism
of « massive gravity » one has two (commonly) diagonal metric

« Massive

metric » — gapdz?dz® = —J(r)dt® + K(r)dr® + L(r)r2dQ?
Flat fapdz?dx® = —dt® +dr? + r2dQ?
metric

In any theory where the Vainshtein mechanism is working for recovering a
solution close to the Schwarschild Black Hole, the g metric must have a
(spherical) Killing horizon at r=r,, ... this must also be a killing horizon for f

@ Impossible:

Minkowski ST has no spherical Killing horizons (but only planar)

NB: this applies also to the new massive gravity of
de Rham, Gabadadze, Tolley (and in particular to
solutions of Nieuwenhuizen; Gruzinov, Mirbabayi)



3.2.2. Causal structure of « type | » static spherically
symmetric solutions of non linear massive gravity

!
«£ 1(“‘ )dt 2B({r)di/dlr C(I] )drj + D(Ir )d ‘

G da”dae”

« Type | » solutions: those with B #0  Salam, Strathdee 1977
Isham, Storey 1978

(as opposed to « type Il » solutions, with B = 0, such as
the ones discussed so far when addressing the Vainshtein
mechanism - (cf. « A\, u, v ansatz ») previous part of this

talk)



Some Type | solutions are known analytically and simple

(Salam, Strathdee 1977, Isham, Storey, 1978;
see also Berezhiani, Comelli, Nesti, Pilo, 2008)

gudztdz” = (1 — q)dt* — (1 — q)~tdr? — r? (d6* + sin®0d¢?)
fupdztdx” = _B( — p)dt* — 2Ddtdr — Adr? — 2/3r? (d6? + sin*0d¢$?)

N\

_ 2 2
A= —3(1 - Q) ( @ q— BQ) Integration constant

With
D?= () (1-0) (- )p+6-1- 50
2M 2A
and {p: i
__ 2M, Ag 2
9= 7 3



Some Type | solutions are known analytically and simple

(Salam, Strathdee 1977, Isham, Storey, 1978;
see also Berezhiani, Comelli, Nesti, Pilo, 2008)

gudztdz” = (1 — q)dt* — (1 — q)~tdr? — r? (d6* + sin®0d¢?)

fupdztdx” = _B( — p)dt* — 2Ddtdr — Adr? — 2/3r? (d6? + sin*0d¢$?)
with [A=351-a)72(p @ q— Bq) Dgration constant
D? = (%) 1-¢)*(p-a)p+B-1-p5q)
Both metric are of
and { p= 2]‘ff 4 Z/‘Tff,ﬂ Schwarzschild-(A)dS form
oM, = A, 9 (no sign of vDVZ or
1= massive gravity!)

- 1 v/ (p—q) (p+B—1—Bq)
Namely, the change of variable dt = \/E{dt$ g dr }

Put the metric f,  in the usual static form of S(A)dS:
fuvdxtdz? = % {(1 —p)dt? — (1 —p)~tdr? — r? (d92 + sin? 9dgb2)}



Causal Structure

by, \
| T="TfH)

Blas, C.D., Garriga 2005

E.g. de Sitter (r,) with
Schwarzschild (r.) with r, <r

L



Causal Structure

T losm) T+ i+

'!;[J

)=

Part of the dS horizon
mapped into the past
timelike infinity of r=r,
2-sphere of Schwarzschild

Blas, C.D., Garriga 2005

E.g. de Sitter (r,) with
Schwarzschild (r.) with r, <r

by, \
| T="TfH)




Blas, C.D., Garriga 2005

Causal Structure E.g. de Sitter (ry) with
T L srsr) T+ i+ | Schwarzschild (rg) with rg <

'!;[J

)=

'III:."-CZII'H:l
Part of the dS horizon |
mapped into the past rI?ar_t of the Sch\c/lvqrzshrl]ld
timelike infinity of r=r, orizon mapped into the
future timelike infinity of

2-sphere of Schwarzschild .
P r=r, 2-sphere of de Sitter



Causal Structure

by, \
| T="TfH)

Bifurcation sphere of one space-time does not lie In
the interior of the other .

Blas, C.D., Garriga 2005

E.g. de Sitter (r,) with
Schwarzschild (r,) with rg <r,




Conclusions (of the second part)

There exist interesting global constraints on putting
together two metrics on a same manifold

@ One simple consequence: failure of the
usual Vainshtein mechanism to recover
Black holes (but there exist non
diagonal solutions crossing the horizon)

@ Consequence for superluminal issues ?

@ One simple question: What is the
ending point of spherical collapse ?






Close to the horizon, the situation (with a working Vainshtein mechanism)
would be similar to the following simple example:

1. Consider 4D schwarzschild ST in static coordinates
Gudrtda” = — ( — 2#) dt? + (l — 2}#) dr? + 1r?(df* + sin*0dp?)

2. On this space-time (for r>r,=2M) define a new metric as
fudrtdx’ = —dt* + dr* + r*(d6* + sin*0dyp?)

@ There is no extension of this construction in a
neighborhood of the horizon where both
metric are non singular

@ (or) any « bi-diagonal Vainshtein recovery » of
Schwarschild must stop at the horizon (or before)



3.2.2. A contrasting example is

1. Consider 4D schwarzschild ST in Eddington-Finkelstein coordinates
Gudrtdr” = — (l — 2}#) dv? + 2dvdr + r?(d6? + sin*0dy?)
2. On this space-time define a new metric as

fdetdr” = —dv? + 2dvdr + r%(d0? + sin*0dp?
"“ e

@ This metric is flat, and extend beyond the future
horizon of the Schwarzschild ST

@ In coordinate system where the Schwarzschild metric
takes the usual diagonal form, the f metric is not

diagonal



3.2.2. A contrasting example is

1. Consider 4D schwarzschild ST in Eddington-Finkelstein coordinates
Gudrtdr” = — (l — ii) dv? + 2dvdr + r?(d6? + sin*0dy?)
2. On this space-time define a new metric as

fdrtdr” = —dv? + 2dvdr + r*(df? + sin*6dp?
/ e




The vDVZ discontinuity gets erased for
distances smaller than R, as expected

—V/A

—V/h ,DL == = =

0.001 0.01 0.1 1



Corrections to GR in the R < R,, regime

10°® .
AR

0 YT (first « Vainshtein »
- r correction to GR)
101 |
10t b
10 |
10" -

0.001 0.01 0.1

R/Ry;




