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One way to modify gravity at « large distances »
… and get rid of dark energy (or dark matter) ?

Changing the dynamics
of gravity ?

Dark matter
dark energy ?

1.1. Introduction: Why « massive gravity » ?

One obviously needs a very light graviton 
(of Compton length of order of the size of the Universe) 
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Pauli-Fierz action: second order action 
for a massive spin two

second order in h  ≡ g -  

The propagators read

1.2.  Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

vDVZ discontinuity
(van Dam, Veltman;
Zakharov; Iwasaki 1970)



2. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »

Can be defined by an action of the form

Einstein-Hilbert action 
for the g metric

Matter action 
(coupled to metric g)

Interaction term coupling
the metric g and the non 
dynamical metric f

Isham, Salam, Strathdee, 1971



Can be defined by an action of the form

The interaction term is chosen such that

• It is invariant under diffeomorphisms
• It has flat space-time as a vacuum
• When expanded around a flat metric
(g  =   + h , f  =  )
It gives the Pauli-Fierz mass term

Matter energy-momentum tensor

Leads to the e.o.m. M2
PGμν =

¡
Tμν + T

g
μν(f, g)

¢
Effective energy-momentum
tensor ( f,g dependent)

Isham, Salam, Strathdee, 1971

2. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »
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• Some working examples

with Hμν = gμν − fμν

• Infinite number of models with similar properties
• Have been investigated in different contexts

• de Rham, Gabadadze,Tolley 2010, 2011 

(Boulware Deser)

(Arkani-Hamed, Georgi, Schwartz)
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with the ansatz (not the most general one) 
gABdx

AdxB = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

Gauge transformation

gμνdx
μdxν = −eν(R)dt2 + eλ(R)dR2 +R2dΩ2

fμνdx
μdxν = −dt2 +

µ
1−

Rμ0(R)
2

¶2
e−μ(R)dR2 + e−μ(R)R2dΩ2

Which can easily be compared to Schwarzschild

Look for static spherically symmetric solutions 
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AdxB = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

Gauge transformation

gμνdx
μdxν = −eν(R)dt2 + eλ(R)dR2 +R2dΩ2

fμνdx
μdxν = −dt2 +

µ
1−

Rμ0(R)
2

¶2
e−μ(R)dR2 + e−μ(R)R2dΩ2

Then look for an expansion in
GN (or in RS ∝ GN M) of the would-be solution

Which can easily be compared to Schwarzschild

Look for static spherically symmetric solutions 
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This coefficient equals +1 
in Schwarzschild solution

÷(R) = à
R

RS(1

õ(R) = +
2
1

R

RS(1

+ …

+ …

(For R ¿ m-1)

Wrong light bending!
(vDVZ discontinuity)
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+O(1)ï+...
with ï =

m4R5

RS

Vainshtein 1972
In « some kind »
[Damour et al.  2003]
of non linear PF

Introduces a  new length scale R    in the problem
below which the perturbation theory diverges!

V

with Rv = (RSm
à4)1/5For the sun: bigger than solar system! 

(For R ¿ m-1)



So, what is going on at smaller distances?

Vainshtein 1972 

There exists an other perturbative expansion at smaller distances, 
defined around (ordinary) Schwarzschild and  reading:

with
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So, what is going on at smaller distances?

Vainshtein 1972 

There exists an other perturbative expansion at smaller distances, 
defined around (ordinary) Schwarzschild and  reading:

with

• This goes smoothly toward Schwarzschild as m goes to zero

• This leads to corrections to Schwarzschild which are non 
analytic in the Newton constant 
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To summarize: 2 regimes
with ï =

m4R5

RS

Valid for R À Rv with Rv = (RSm
à4)1/5

Valid for R ¿ Rv

Expansion around
Schwarzschild

solution

Crucial question: can one join the two
regimes in a single existing non singular

(asymptotically flat) solution? (Boulware Deser 72)

Standard 
perturbation theory
around flat space



This was investigated (by numerical integration) by 
Damour, Kogan and Papazoglou 2003

No non-singular solution found
matching the two behaviours (always
singularities appearing at finite radius) 
and hence failure of the « Vainshtein
mechanism »

(see also Jun, Kang 1986)

We (Babichev, C.D., Ziour) reinvestigated this issue 
using more sophisticated methods and found solutions
featuring the Vainshtein recovery
(with the Arkani-Hamed, Georgi, Schwartz potential and a source)
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To obtain our solutions, we used the « Decoupling Limit », 
and various (asymptotic) expansions, and we first…

« shooted »

Then « relaxed »

One crucial issue: existence of infinitely many
solutions at infinity (in the decoupling limit: we
have two different mathematical proofs of that) 



Numerical solutions (of the full non linear system) 

«GR regime »«GR regime »

« linear regime »

Yukawa decay

source



Solutions were obtained for very low density
objects. We did not find numerically what is
happening for dense objects (and BHs).

So the Vainshtein’s mechanism does really work
even in sick theories (NB: our numerical results were
confirmed by M. Volkov) !
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3. Generic properties of horizon structure 
(and some consequences)

Consider a theory with two metrics, gμ ν and fμ ν

We want to investigate the consequence of one of the metrics (say g) 
to have a Killing horizon (in the static-spherically symmetric or 
stationary-axisymmetric cases)
Consider first the case where the two metrics are static
and spherically symmetric

C.D.,T.Jacobson, CQG 2012
3.1 Formal results

i.e. both metric must have the same horizon
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First proof (1a)

When both metrics are static and spherically symmetric, they
can be put in the form (in a common coordinate system)

Consider the scalar (assuming B=0 at the horizon)

It must be regular at the horizon r=rH if both metrics are regular there

But A(rH)=0 , and J/A, K/C and r2/D have the same sign, so cannot cancel

One must have J(rH) = 0  
(and hence the killing horizon of g is also one for f)
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Second proof (1b)
(based on theorems by Racz and Wald 1992, 1996)

If a space-time has a Killing horizon, then, under rather general
assumptions, it has a « virtual » bifurcation surface.

More precisely: 

if a space-time is static (with « t » reflection symmetry) or 
stationary axisymmetric with « t-φ » reflection symmetry, and if 
the surface gravity of the horizon is non zero and constant

then

There is an extension of a neighborhood of the horizon to one 
with a bifurcate Killing horizon

(i.e. a Killing horizon which contains a bifurcation surface)
(NB: this applies to any space-time without assuming
anything concerning the field equations)



Moreover (Racz-Wald 1996)

Any Killing invariant tensor field sharing the t or the t-φ reflection
symmetry of the metric

can be extended globally to the enlarged space-time. 



Moreover (Racz-Wald 1996)

Any Killing invariant tensor field sharing the t or the t-φ reflection
symmetry of the metric

can be extended globally to the enlarged space-time. 

(where χ is the killing vector)

NB: This extends to the stationary-axisymmetric case



This does not preclude the existence of two geometries one with a 
Killing horizon and one without…. 

But only implies that the non-horizon geometry cannot possess the 
t-φ (or t in the previous case) reflection symmetry

E.g.: the existence of a non zero B in the g metric can allow both
geometries to be regular at the horizon.



This does not preclude the existence of two geometries one with a 
Killing horizon and one without…. 

But only implies that the non-horizon geometry cannot possess the 
t-φ (or t in the previous case) reflection symmetry

E.g.: the existence of a non zero B in the g metric can allow both
geometries to be regular at the horizon.

When this is the case (i.e. when the Killing horizon is not a 
Killing horizon for the other metric)

The bifurcation surface of the g spacetime
cannot lie in the interior of the f space-time

Conversely, when the horizon coincide, they must 
have the same surface gravity (see. e.g. M. Volkov arXiv:1202.6682 )



This can be put together as 
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3.2 Some Consequences

3.2.1. (Standard) Vainshtein mechanism
does not work for black holes

In any theory where the Vainshtein mechanism is working for recovering a 
solution close to the Schwarschild Black Hole, the g metric must have a 
(spherical) Killing horizon at r=rH … this must also be a killing horizon for f

Impossible: 
Minkowski ST has no spherical Killing horizons (but only planar)

NB:  this applies also to the new massive gravity of 
de Rham, Gabadadze, Tolley (and in particular to 
solutions of Nieuwenhuizen; Gruzinov, Mirbabayi)

Indeed, in the standard way of looking at Vainshtein mechanism
of « massive gravity » one has two (commonly) diagonal metric

gABdx
AdxB = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

« Massive 
metric »

Flat 
metric



Salam, Strathdee 1977
Isham, Storey 1978

3.2.2. Causal structure of « type I » static spherically
symmetric solutions of non linear massive gravity

« Type I » solutions: those with B  0

(as opposed to « type II » solutions, with B = 0, such as 
the ones discussed so far when addressing the Vainshtein
mechanism - (cf. « λ, μ, ν ansatz ») previous part of this
talk)
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and

(Salam, Strathdee 1977, Isham, Storey, 1978;  
see also Berezhiani, Comelli, Nesti, Pilo, 2008)

Integration constant

Some Type I solutions are known analytically and simple



With

and
Both metric are of 
Schwarzschild-(A)dS form
(no sign of vDVZ or 
massive gravity!)

Namely, the change of variable 
Put the metric f  in the usual static form of S(A)dS:   

(Salam, Strathdee 1977, Isham, Storey, 1978;  
see also Berezhiani, Comelli, Nesti, Pilo, 2008)

Integration constant

Some Type I solutions are known analytically and simple
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E.g. de Sitter (rH) with
Schwarzschild (rs) with rs < rH

Causal Structure
Blas, C.D., Garriga 2005
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f

g

Part of the dS horizon 
mapped into the past
timelike infinity of r=rH
2-sphere of Schwarzschild

Part of the Schwarzshild
horizon mapped into the 
future timelike infinity of 
r=rs 2-sphere of de Sitter 

E.g. de Sitter (rH) with
Schwarzschild (rs) with rs < rH

Causal Structure
Blas, C.D., Garriga 2005



f

g

Bifurcation sphere of one space-time does not lie in 
the interior of the other …

E.g. de Sitter (rH) with
Schwarzschild (rs) with rs < rH

Causal Structure
Blas, C.D., Garriga 2005



Conclusions (of the second part)

There exist interesting global constraints on putting 
together two metrics on a same manifold

One simple consequence: failure of the 
usual Vainshtein mechanism to recover
Black holes (but there exist non 
diagonal solutions crossing the horizon)

Consequence for superluminal issues ? 

One simple question: What is the 
ending point of spherical collapse ? 





Close to the horizon, the situation (with a working Vainshtein mechanism) 
would be similar to the following simple example: 

1. Consider 4D schwarzschild ST in static coordinates

2. On this space-time (for r>rH=2M) define a new metric as 

There is no extension of this construction in a 
neighborhood of the horizon where both
metric are non singular

(or) any « bi-diagonal Vainshtein recovery » of 
Schwarschild must stop at the horizon (or before)



3.2.2. A contrasting example is

1. Consider 4D schwarzschild ST in Eddington-Finkelstein coordinates

2. On this space-time define a new metric as 

This metric is flat, and extend beyond the future 
horizon of the Schwarzschild ST

In coordinate system where the Schwarzschild metric
takes the usual diagonal form, the f metric is not 
diagonal



3.2.2. A contrasting example is

1. Consider 4D schwarzschild ST in Eddington-Finkelstein coordinates

2. On this space-time define a new metric as 

f

g



The vDVZ discontinuity gets erased for 
distances smaller than RV as expected



(first « Vainshtein »
correction to GR)

Corrections to GR in the R ¿ RV regime


