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 Conventional currentless disks that are commonly assumed to surround black 

holes are shown to be subject to the excitation of  magneto gravitational modes [1] 

associated with the gradients of the rotation frequency, of the plasma density and  

temperature combined with the effects of gravity. Thus stationary current carrying plasma 

configurations that can be found by a fully non-linear analysis have been looked for and 

their features connected to those of the magneto-gravitational modes found by a 

linearized analysis.   

In particular, two classes of plasma and field axisymmetric configurations are 

found all of them involving periodic sequences of plasma rings or solitary rings.  These 

are: i) Localized Differential Rotator configurations [2] that are connected mainly to the 

radial gradient of the rotation frequency; ii) Localized Rigid Rotor configurations that are 

connected to the product of the vertical component of the gravitational force and the 

radial density gradient.  The latter class of configurations does not require, unlike the 

former [2], the presence of a seed magnetic field. 

 Analytical representations of both classes of configurations are derived and the 

compatibility of these configurations with the presence of accretion processes is pointed 

out. 

*Sponsored in part by the US Department of Energy. 
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Currentless Plane Disk Model 
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Relevant Driving Factors for Different  
(from the Conventional Disk) Configurations 
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Note: A non-isotropic electron distribution in velocity space, for instance with 

 Te! " Te! , 

can drive the growth of the magnetic fields toward significant values starting from a 

very small initial perturbation of the electron distribution.  Can gravity combined 

with plasma inhomogeneities continue the process of magnetic field generation after 

the anisotropy has vanished? 

Magneto Gravitational Modes that are linearly unstable have been found (Coppi, 

A&A, 504, 2009) which include both  

!0z
"
"R

#   and  2!0R
"
"z

# $!( )%& '(  

as relevant driving factors.  A seed magnetic field  Bz
0   is required for the existence 

of these modes. 



Driving Factors for Magneto Gravitational Modes 
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Dispersion Equation and Marginal Stability Condition 
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Dispersion Equation for Unstable Modes 
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Next (odd) Eigenfunction 
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Quadratic Form 
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to be associated with the sources of magnetic field configurations emerging from 
the relevant non-linear analysis. 



Basic Assumptions for Non-linear Configurations

Given the intent to identify the simplest plasma and field configurations that
can (theoretically) exist around compact collapsed objects such as black holes
we limit our analysis to axisymmetric geometries with the following points:

I a) perfectly conducting plasma regimes are considered and,
consequently,

V=αvB + Ω (ψ) Reϕ

where V is the plasma flow velocity, ψ = ψ (R, z) is the magnetic surface
function and we use cylindrical coordinates.

I b) no appreciable poloidal flow velocity is included.
I c) the relevant particle distributions in velocity space are close to

Maxwellian and referring to a scalar pressure (P = pI) is appropriate in
this case
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Basic Assumptions for Non-linear Configurations (cont.)

I d) at first we assume that the relevant Lorentz force does not have a
toroidal component and the relevant magnetic field configurations are
represented by

B =
1
R

[∇ψ × eφ + I (ψ) eφ] .

In this case the Lorenz force FL is given simply by

FL =
1

4πR2

(
∆∗ψ + I

dI
dψ

)
∇ψ

where

∆∗ψ ≡
∂2ψ

∂z2 + R
∂

∂R

(
1
R
∂

∂R
ψ

)
.
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Basic Assumptions for Non-linear Configurations (cont.)

I e) a Newtonian gravitational potential ΦG is included for simplicity. In
particular, for the relative thin structures that we shall analyze

∇ΦG ' −
V2

K

R

(
eR +

z
R

eZ

)
where

V2
K ≡

GM∗
R
≡ Ω2

KR2

and ΩK is the Keplerian frequency. We observe that when considering
scale distances which are relatively close to black holes we have found it
convenient to make use of effective gravitational potentials in order to
include relevant General Relativity effects in the theory (Coppi, 2011).
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Relevant Form of the Master Equation
Referring to the total momentum conservation

−ρ
(
∇ΦG + Ω2R eR

)
= −∇p +

1
c

J× B (1)

we observe that

∇×
(
ρ∇ΦG + ρΩ2R eR

)
= eφ

{
∂ρ

∂z

(
RΩ2 +

∂ΦG

∂R

)
(2)

+ρR2Ω
∂Ω

∂z
− ∂ρ

∂R
∂ΦG

∂z

}
and

∇×
(

1
c

J× B
)

=
1

4π
∇× (B · ∇B) =

1
4πR2

[
− 2

R

(
∆∗ψ + I

dI
dψ

)
eR

+∇ (∆∗ψ)

]
×∇ψ. (3)
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Relevant Form of the Master Equation (cont.)
Therefore, we obtain the “Master Equation” (Coppi, 2011) that relates ψ to ρ

R
∂

∂z

(
Ω2ρ

)
+
∂ρ

∂z
∂ΦG

∂R
− ∂ρ

∂R
∂ΦG

∂z
(4)

' 1
4πR2

{[
2
R

(
∆∗ψ + I

dI
dψ

)
− ∂

∂R
(∆∗ψ)

]
∂ψ

∂z
+

[
∂

∂z
(∆∗ψ)

]
∂ψ

∂R

}
.

We consider local plasma and field structures in an interval |R− R0| < R0
around R− R0 and we indicate the characteristic scale distance over which
R− R0 and z vary by ∆R and ∆z, respectively. Here ρ = ρ

(
R∗, z̄2

)
,

ψ = ψ
(
R∗, z̄2

)
for

R∗ ≡
R− R0

∆R
, z̄ ≡ z

∆z
and ∆2

R . ∆� R2
0.

In particular, we consider ρ to be an even function of both R∗ and z̄ that is
positive for all values of R∗ and z̄.
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Locally Rigid Rotor Configurations 
 

The Locally Rigid Rotor configurations we consider are localized over a radial scale 

distances  !R < R0 .  In particular, for these configurations 

V! ="0R   where  !0 " !k R = R0( ) . 

Then 

!0R ="vB# +! $( )R       (1) 

where !" #V( ) = 0  implies that !v" = G #( )   and 

B! = "0 #" $( )%& '(
R)

G $( ) .      (2) 

We note that in this class of configurations a seed magnetic field is not required.  

Clearly, the simplest case to analyze is that with  B! = 0   and  ! "( ) =!0 . 

 



Locally Rigid Rotor Configurations 
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!0
2 z "#

"R
+ 3 R $ R0( ) "#

"z
%
&'

(
)*
 

 
 
!

1
4!R0

2
"3

"z3
#

$
%&

'
()
"#
"R

* "3

"R3
#

$
%&

'
()
"#
"z

+

,
-

.

/
0

1
2
3

43
+ "

"z
"2

"R2
#

$
%&

'
()
"#
"R

* "
"R

"2

"z2
#

$
%&

'
()
"#
"R

+

,
-

.

/
0
5
6
3

73
 

and we note  that in this case !  can be either an odd or an even function of  R!  and 

an even or odd function of  z . 

 Note that the formation of the relevant magnetic configuration is connected to 

the term Fz !" !R , that is, to the vertical component of the vertical force combined 

with the radial density gradient. 
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Master Equation for Local Rigid Rotor Configurations

Referring to the relevant form of the Master Equation and considering the
dependence of ψ on z indicated by

ψ1 = ψN ψ̄∗ (R∗) exp
(
−z̄2/2

)
and

ρ = ρN ρ̄∗ (R∗) exp
(
−z̄2) ,

the equation becomes

Ω2
0

[
∂ρ

∂R
− 6

(R− R0)

∆2
z

ρ

]
' 1

4πR2
0∆2

z
×
{
ψ
∂

∂R

[
∂2ψ

∂R2 +
1

∆2
z

(
z̄2 − 1

)
ψ

]
−
(
∂ψ

∂R

)[
∂2

∂R2 +
1

∆2
z

(
z̄2 − 1

)]
ψ

}
. (41)
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Master Equation for Local Rigid Rotor Configurations (cont.)

Then we obtain, for ∆2
R/∆

2
z � 1,

dρ̄∗
dR∗
' d

dR∗

[
ψ̄∗

d2ψ̄∗
dR2

∗
−
(

dψ̄∗
dR∗

)2
]
. (42)

Consequently, the relationship between ρ and ψ can be expressed as

ρ̄∗ = ρ̄0 −
(

dψ̄∗
dR∗

)2

+ ψ̄∗
d2ψ̄∗
dR2

∗
. (43)

Clearly, in the considered limit
(
∆2

R � ∆z
)
,

∂pM

∂z̄2 '
ψ2

N

8πR2
0∆2

R
exp

(
−z̄2) ψ̄∗ (R∗)

d2ψ̄∗
dR2

∗
. (44)
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Master Equation for Local Rigid Rotor Configurations (cont.)
Therefore,

pM ' −
ψ2

N

8πR2
0∆2

R
ψ̄∗

d2ψ̄

dR2
∗

exp
(
−z̄2) (45)

and if ψ̄∗d2ψ∗/dR2
∗ < 0 we require that

pG0 ρ̄∗ >
ψ2

N

8πR2
0∆2

R

(
ψ̄∗

d2ψ∗
dR2

∗

)
. (46)

The relevant toroidal current density is about

Jφ ' − c
4πR0

(
1

∆2
R

∂2ψ

∂R2
∗

+
1

∆2
z

∂2ψ

∂z̄2

)
= − cψN

4πR0∆2
R

[
d2ψ̄∗
dR2

∗
+

∆2
R

∆2
z

(
z̄2 − 1

)
ψ̄∗

]
exp

(
−z̄2/2

)
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Magnetic Field Configurations with even ψ̄∗ (R∗)

An important set of field and plasma configurations that has not been looked
for until now is that for which the magnet surface function ψ is, locally, an
even function of R∗ and for which the pre-existence of a seed field is not
required. For this we refer to rotation frequencies that are independent of ψ
(“locally rigid rotors”). Thus the onset of these configurations may be
considered as a candidate process for the generation of magnetic fields
associated with the combined product of the gravitational force vertical
component and of the local plasma density gradient.
In particular, we observe that the function sin k∗R∗ and cos k∗R∗ are solutions
of Eq. (44) for ρ̄∗ = 0 as in this case

d
dR∗

[
ψ̄∗

d2ψ̄∗
dR2

∗
−
(

dψ̄∗
dR∗

)2
]

= 0. (47)
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Magnetic Field Configurations with even ψ̄∗ (R∗) (cont.)
Therefore, we may consider a periodic solution of the form

ψ̄∗ ' cos R∗ +
α∗
4

cos (2R∗) ,

that, given Eq. (45), can lead to

ρ̄∗ = α∗

{
5
4
− cos R∗

(
5
4
− 9

2
sin2 R∗

)}
.

Clearly, this is, again, a periodically modulated density profile.
For this class of configurations we may consider also the possibility that
Solitary Rings may emerge. As an example of these we take

ψ̄∗ =
(
1 + R2

∗
)1/2

,

and we note that dψ̄∗/dR∗ = R∗/
(
1 + R2

∗
)1/2. Thus

ρ̄∗ '
2

1 + R2
∗
.

() May 24, 2012 1 / 1



Locally Differential Rotator Configurations

In this case we assume that a seed magnetic field B0ez is present
corresponding to a magnetic surface function ψ0 ' B0R0R, and refer to a
surface function ψ ' ψ0 + ψ1 with |ψ1| < ψ0 but
Bz ∼ |ψ1|/ (∆RR0) > B0 ∼ ψ0/R2

0.

Then we take

Vφ ' Ω (ψ) R ' Ωk (R0) R0 + Ωk (R0) (R− R0) (5)

+

(
dΩk

dR

)
R=R0

[(R− R0) + ψ1/ (dψ0/dR)]

and define

δΩ =

[
dΩK

dR

/
dψ0

dR

]
R=R0

ψ1.
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Locally Differential Rotator Configurations (cont.)

In this case considering the asymptotic limit where R0∆R > ∆2
z > ∆2

R the
Master Equation reduces to

− Ω2
DR0

∂

∂z

(
ρ
ψ1

ψ0

)
' 1

4πR2
0

{[(
∂3

∂z3ψ1

)
∂ψ1

∂R
−
(
∂3

∂R3ψ1

)
∂ψ1

∂z

]
(6)

+

[(
∂

∂z
∂2

∂R2ψ1

)
∂ψ1

∂R
−
(
∂

∂R
∂2

∂z2ψ1

)
∂ψ1

∂z

]}
where

Ω2
D = −R0

d
dR

Ω2
k = 3Ω2

0. (7)

Clearly the symmetries of this equation indicate that δΩ and therefore ψ1 have
to be odd functions of R∗. We observe that ρΩ2

D is the driving factor for the
field configuration represented by ψ1. Then we note that the scale distance ∆z
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Locally Differential Rotator Configurations (cont.)

does not affect Eq. (6) in the limit where ∆2
R
/

∆2
z can be neglected and in this

case, that was analyzed earlier (Coppi and Rousseau, 2006),

∆R

R0
∼
(

ψ1ψ0

4πρR6
0Ω2

D

)1/3
. (8)

() May 24, 2012 8 / 27



Periodic Ring Structures for Local Differentially Rotating
Configurations

These structures can be found in the limit where the ratio ∆2
R
/

∆2
z can be

considered as negligibly small. Thus they may be viewed as having a
“microscopic” radial modulation while the kind of structure identified in
Section 7 can have a “macroscopic” radial thickness of the order of ∆z. In the
present case case the Master Equation reduces to that derived already in
(Coppi and Rousseau, 2006),

ρ̄∗ψ̄∗ =
d3ψ̄∗
dR3

∗
ψ̄∗ −

d2ψ̄∗
dR2

∗

dψ̄∗
dR∗

, (37)

and the considered solution is

ψ̄∗ = sin R∗ +
ε∗
2

sin 2R∗ , (38)
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Periodic Ring Structures for Local Differentially Rotating
Configurations (cont.)
leading to the following radial density profile

ρ̄∗ = ε∗
sin2R∗

1 + ε∗ cos R∗
, (39)

where the dimensionless parameter ε∗ ≤ 1/4. We observe that ψ̄∗ = sin R∗ is
the solution corresponding to ε∗ = 0 and to a vanishing modulated density ρ∗.
Then the question that remains to be investigated is whether this periodic
solution will survive when appreciable values for ∆2

R
/

∆2
z are considered and

the assumption of separability cannot be maintained. Moreover, we observe
that

pM '
1

8πR2
0

{
1

∆R
2ψ

2 − I2
}

(40)

and given the expression (42) for ρ̄∗ if we take I2 . (ψ/∆R)2 we have no
evident problems with the expression for TM = mipM /(2ρ).
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Solitary Ring Solution

A radially localized solution of the Master Equation (6) that involves a
Gaussian function is

ψ̄∗ = R∗ exp
(
−1

2
R2
∗

)
. (26)

The expression for ρ̄ that we obtain in this case is

ρ̄∗ = 2
[

∆2
R

∆2
z

+ R2
∗

(
1− ∆2

R

∆2
z

)]
exp

(
−1

2
R2
∗

)
. (27)

requiring that ∆2
R
/

∆2
z ≤ 1. We observe that the profile (30) corresponds to a

single ring when

2
3
<

∆2
R

∆2
z
≤ 1. (28)
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Solitary Ring Solution (cont.)
Clearly, BR ∼ Bz when ∆R ∼ ∆z and in this case v2

A
∼ v0

φv0
th where vA is the

Alfvén velocity for ψN ∼ ψ0, vφ = ΩkR0 and v0
th ∼ (2TG0/mi)

1/2.
Thus we may argue that the pair of rings collapses into one ring as (∆R/∆z)

2

is increased. The poloidal magnetic field components now are

Bz '
ψN

R0∆R

(
1 + R2

∗
)

exp
[
−1

2
(
R2
∗ + z̄2)] , (29)

and

BR '
ψN

R0∆R
z̄R̄∗ exp

[
−1

2
(
R2
∗ + z̄2)] , (30)

Thus the relevant magnetic surfaces exhibit two O-points, at R∗ = ±1 and
z̄ = 0. The current density Jφ becomes

Jφ '
cψ0

N

4πR0
exp

[
−1

2
(
R2
∗ + z̄2)]R∗

[(
1− z̄2) 1

∆2
z

+
(
3− R2

∗
) 1

∆2
R

]
(31)
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Solitary Ring Solution (cont.)
and of opposite current channels for R∗ > 0 and R∗ < 0.
Now if we refer to Eq. (21) where we take I = 0 we have

pM = −
R2
∗ψ

2
N

8πR2
0

[
1

∆2
z
z̄2 +

1
∆2

R

(
R2
∗ − 3

)]
exp

[
−
(
R2
∗ + z̄2)] (32)

that is always negative for R2
∗ > 3. On the other hand in this case

pG = pNG

[
∆2

R

∆2
z

+ R2
∗

(
1− ∆2

R

∆2
z

)]
exp

[
−1

2
(
R2
∗ + z̄2)] . (33)

Therefore,

p = pG + pM = PNG exp
[
−1

2
(
R2
∗ + z̄2)] (34)

·
{

R2
∗ +

∆2
R

∆2
z

(
1− R2

∗
)

+

(
ψ2

N

8πR2
∗∆

2
R pNG

)
exp

[
−1

2
(
R2
∗ + z̄2)] [R2

∗
(
ρ− R2

∗
)
− ∆2

R

∆2
z

z̄2
]}

.
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Solitary Ring Solution (cont.)
Clearly, for adequate values of pNG the total plasma pressure can remain
positive and with a finite total temperature T for all values of z̄ and R∗. We
observe that the “complex” toroidal current density pattern represented by
Eq. (34) is reminiscent of that found for the modes identified in (Coppi, 2006).
We note that the complete magnetic surface function ψ is, in this case,

ψ = ψ1 (R∗, z̄) + R∗
∆R

R0
ψ0 = ψN

[
ψ̄∗ (R∗) exp

(
−1

2
z̄2
)

+ R∗
∆R

R0

ψ0

ψN

]
(35)

and we consider ψN /∆R > ψ0/R0. Therefore, the relevant magnetic surfaces
are represented by

R∗ exp
[
−1

2
(
R2
∗ + z̄2)]+ εzR∗ = constant. (36)

for εz < 1, referring to Eq. (19). A graphical representation of these surfaces
is given in the following figure.
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Solitary Ring Solution (cont.)

Figure: Graphical representation of the magnetic surfaces for the configuration
corresponding to Eq. (38). The curve with dotted heavy lines indicates the single ring
density profiles represented by Eq. (39) for ∆2

R/∆
2
z = 1/10.
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Vertical Momentum Density Conservation

The vertical equilibrium equation connects the total plasma pressure to the
particle density and the magnetic field configuration. In particular this
equation can be written as

0 ' −Ω2
kρz− ∂

∂z

(
p +

B2

8π

)
+

1
4π

(B · ∇B)z (9)

and we find it convenient to separate p into pG + pM where

2
∂

∂z2 pG = −Ω2
kρ. (10)

Thus we may define the temperature

TG =
mi

2
pG

ρ
(11)
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Vertical Momentum Density Conservation (cont.)
where mi is the mass of the nuclei of which the plasma is composed and
consider sufficiently high values of TG that p = pG + pM is always positive.
Clearly

∂pM

∂z
= − 1

8π
∂

∂z

(
B2

R + B2
φ

)
− 1

4π

(
BR

∂

∂R
Bz

)
. (12)

If we consider axisymmetric configurations for which I = I (ψ) this reduces
to

∂pM

∂z
= − 1

4πR2
∂ψ

∂z

(
∆∗ψ + I

dI
dψ

)
(13)

leading to the so called “G-S equation” for magnetically confined plasmas
where∇p = (dp/dψ)∇ψ and gravity and rotation are not included. The so
called “pulsar equation” describing the magnetic configuration of an
axisymmetric plasma surrounding a rotating neutron star was derived first and
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Vertical Momentum Density Conservation (cont.)

solved along similar lines by Cohen, Coppi and Treves, 1973. In the present
case we do not consider pM = pM (ψ), and have, for configurations localized
around R = R0,

∂

∂z

{
pM +

1
8πR2

0

[
I2 +

(
∂ψ

∂z

)2
]}
' − 1

4πR2
0

∂ψ

∂z
∂2ψ

∂R2 . (14)

In particular, if introduce the dimensionless variables R∗ and z̄, Eq. (17)
becomes

∂

∂z̄

{
pM +

1
8πR2

0

[
I2 +

1
∆2

z

(
∂ψ

∂z̄

)2
]}
' − 1

4πR2
0∆2

R

∂ψ

∂z̄
∂2ψ

∂R2
∗
. (15)
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Factorized Solutions
Now we limit our analysis to functions ψ̄, that can be factorized as follows

ψ̄ = ψ̄∗ (R∗) exp
(
− z̄2

2

)
(16)

and Eq. (18) becomes

∂

∂z̄

{
pM +

I2

8πR2
0

}
' 1

8πR2
0

{
1

∆2
z
ψ̄2
∗ +

1
∆2

R
ψ̄∗

d2ψ̄∗
∆R̄2

∗

}
exp

(
−z̄2) . (17)

Therefore

pM +
I2

8πR2
0
' − 1

16πR2
0

{
1

∆2
z
ψ̄2
∗ +

1
∆2

R
ψ̄∗

d2ψ̄∗
dR2

∗

}
exp

(
−z̄2) . (18)

Then we refer to Eq. (13), assume for simplicity that TG = TG0 is constant,
write

4
mi

TG0

Ω2
k

∂ρ

∂z2 = −ρ (19)
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Factorized Solutions (cont.)
and define

∆2
G ≡

4TG

miΩ2
∗
. (20)

Consequently,

ρ = ρN ρ̄∗ (R∗) exp
(
−z2

∆2
G

)
(21)

The relationship between ∆2
G and ∆2

z will depend on the classes of solutions
of the Master Equation that we shall consider. In particular, for the Local
Differentially Rotator configurations we shall find

∆2
G = 2∆2

z (22)

and for the Locally Rigid Rotor configurations

∆2
G = ∆2

z . (23)
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Factorized Solutions (cont.)

We observe also that

∂

∂z
I2 = 2I

∂ψ

∂z
dI
dψ

(24)

and in the case where ψ ' ψ0 + ψ1 we have

∂

∂z
I2 ' −

[
d

dψ0
I2 (ψ0)

]
ψN ψ̄∗ (R∗)

1
∆z

exp
(
− z̄2

2

)
. (25)

Therefore in the present case this component of pM has the same z-profile as
pG .
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