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Background

Duality symmetries in string theory/M-theory mix gravitational

and non-gravitational fields. Manifestation of such symmetries

calls for a generalisation of the concept of geometry.

It has been proposed that the compactifying space (torus) is en-

larged to accomodate momenta in representations of a duality

group.

This leads to doubled geometry

in the context of T-duality [Hull et al.; Hitchin;...]

and generalised/exceptional geometry

in the context of U-duality. [Hull; Berman et al.; Coimbra et al;...]



Compactify from 11 to 11−n dimensions on Tn. As is well known,

all fields and charges fall into representations of En(n).

n En(n)

4 SL(5)

5 Spin(5, 5)

6 E6(6)

7 E7(7)

8 E8(8)



Compactify from 11 to 11−n dimensions on Tn. As is well known,

all fields and charges fall into representations of En(n).

n En(n) R

4 SL(5) 10

5 Spin(5, 5) 16

6 E6(6) 27

7 E7(7) 56

8 E8(8) 248

I will focus on diffeomorphisms, and how they generalise. The

ordinary diffeomorphisms go together with gauge transformations

for the 3-form and (dual) 6-form fields (and for high enough n also

gauge transformations for dual gravity) in an En(n) representa-

tion R. This is the “coordinate representation”. The derivative

transforms in R.



One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary

diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑

transport term GL transformation



One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary

diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑

transport term GL transformation

In the case of U-duality, the role of GL is assumed by En(n) ×R,

and

LUV
M = UN∂NV M +ΠM

Q,
N

P∂NUPV Q

where ΠM
Q,

N
P = −αnP

M
adjQ,

N
P + βnδ

M
Q δNP .



n repr. of UM αn βn

4 10 3 1
5

5 16 4 1
4

6 27 6 1
3

7 56 12 1
2

For these values of the coefficients, the transformations form an

algebra for n ≤ 7:

[LU ,LV ]W
M = L[[U,V ]]W

M

where the “Courant bracket” is [[U, V ]]M = 1
2 (LUV

M − LV U
M ),

provided that the derivatives fulfill a “section condition”.



The section condition ensures that fields locally depend only on

an n-dimensional subspace of the coordinates, on which a GL(n)

subgroup acts. It reads

(∂ ⊗ ∂)|R2
= 0

n R1 R2

3 (3,2) (3,1)

4 10 5

5 16 10

6 27 27

7 56 133

8 248 1⊕ 3875

I will digress a little on this condition.



The interpretation of the section condition is that the momenta

locally are chosen so that they may span a linear subspace of

cotangent space with maximal dimension, such that any pair of

covectors p, p′ in the subspace fulfill (p⊗ p′)|R2
= 0.

The corresponding statement in T-duality is ηMN∂M ⊗ ∂N = 0,

where η is the O(d, d)-invariant metric. The maximal linear sub-

space is a d-dimensional isotropic subspace, and it is determined

by a pure spinor Λ. Once a Λ is chosen, the section condition can

be written ΓMΛ∂M = 0.

(In double field theory, the condition may be weakened, so that

only ηMN∂M∂N = 0. This seems difficult here.)

What are the corresponding U-duality covariant statements, i.e.,

how does the concept of a pure spinor generalise, and what is the

linear condition that picks out allowed momenta?



These questions have to be adressed case by case. For all n ≤ 7,

such objects exist, and are given by the following table (n = 8

not worked out). Take an object Λ in R3 with a purity constraint

Λ2|P = 0, and let (Λ∂)|R4
= 0. This gives the maximal solution

to the section condition, and selects an n-dimensional subspace.

n R1 R2 R3 R4 P

3 (3,2) (3,1) (1,2) (3,1) —

4 10 5 5 10 —

5 16 10 16 45 10

6 27 27 78 351 650

7 56 133 912 1539 1463

The representationsRp+1 (almost) coincide with the p-brane charges

in the uncompactified directions, and form part of a tensor hier-

archy.



The generalised diffeomorphisms do not satisfy a Jacobi identity.

On general grounds, it can be shown that the “Jacobiator” is

proportional to (([[U, V ]],W )) + cycl, where ((U, V )) = 1
2 (LUV +

LV U).

It is important to show that the Jacobiator in some sense is trivial.

It turns out that L((U,V ))W = 0 (for n ≤ 7), and the interpretation

is that it is a gauge transformation with a parameter representing

reducibility.

In doubled geometry, this reducibility is just the scalar reducibility

of a gauge transformation: δB2 = dλ1, with the reducibility δλ1 =

dλ′

0.

In generalised geometry, the reducibility turns out to be more

complicated.



The tensor gauge transformations are reducible. A 2-form trans-

formation has a 1-form reducibility and a 0-form second order

reducibility, so that the effective number of gauge parameters in

n dimensions is
(

n
2

)

−n+1 =
(

n−1
2

)

, and analogously for a a 5-form

parameter
(

n−1
5

)

.

Including diffeomorphisms, the effective number of generalised dif-

feomorphisms should be n+
(

n−1
2

)

+
(

n−1
5

)

, as long as dual gravity

does not enter.



A parameter constructed as UM [ξ] = ∂NξMN , where ξ is in the

representation conjugate to the section condition, will generate

a zero transformation through LU [ξ]. This is the first order re-

ducibility.

The relation for U [ξ] will in turn be reducible, in the sense that

for an η[ξ] ∼ ∂ξ in a certain representation, U [ξ[η]] = 0, and so

on. In all cases, the reducibility is infinite (if En(n) covariance is

demanded).

The (ghost) structure of this reducibility will be identical to the

one for the (weak) section condition, seen as an algebraic condition

on an object X.

Write a partition function for the constrained object by counting

the homogeneous functions of degree k of the constrained object

X:

Z(t) =

∞
∑

k=0

dim(rk)t
k



Z3(t) = (1− t)−4(1 + 2t) ,

Z4(t) = (1− t)−7(1 + 3t+ t2) ,

Z5(t) = (1− t)−11(1 + t)(1 + 4t+ t2) ,

Z6(t) = (1− t)−17(1 + t)(1 + 9t+ 19t2 + 9t3 + t4) ,

Z7(t) = (1− t)−28(1 + 28t+ 273t2 + 1248t3 + 3003t4 + 4004t5 + 3003t6 + 1248t7

+ 273t8 + 28t9 + t10) ,

Z8(t) = (1− t)−58(1 + t)(1 + 189t+ 14080t2 + 562133t3 + 13722599t4

+ 220731150t5 + 2454952400t6 + 19517762786t7 + 113608689871t8

+ 492718282457t9 + 1612836871168t10 + 4022154098447t11

+ 7692605013883t12 + 11332578013712t13 + 12891341012848t14

+ 11332578013712t15 + 7692605013883t16 + 4022154098447t17

+ 1612836871168t18 + 492718282457t19 + 113608689871t20

+ 19517762786t21 + 2454952400t22 + 220731150t23 + 13722599t24

+ 562133t25 + 14080t26 + 189t27 + t28) .



The effective number of independent gauge parameters is read off

as the negative power of the first factor.

For n ≤ 7, they match the number of diffeomorphisms, 2-form

and 5-form (for n ≥ 6) transformations calculated above. For n =

8, the number also matches the number obtained by including

n
(

n−1
7

)

for a vector-valued 7-form.

n diffeo 2-form 5-form dual diffeo total

3 3 1 4

4 4 3 7

5 5 6 0 11

6 6 10 1 17

7 7 15 6 0 28

8 8 21 21 8 58



Comments and questions:

What can be done for n ≥ 8? The counting of parameters seems

meaningful for n = 8, although there is yet no construction of the

gauge algebra.
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Actions for the bosonic fields can be obtained from a scalar curva-

ture. In order to do a generalised supergeometry, we need a kind of

Einstein–Cartan formulation. Some basic work needs to be done.
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Solutions to the (weak) section condition provides interesting gen-

eralisations of pure spinor cônes. Can one go beyond supergravity
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dition?
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