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Poincaré Lemma

Coordinates

x = (x1, . . . , xn) c = (c1, . . . , cn)

x ’s and c ’s have opposite Grassmann parity

ε(c i ) = ε(x i ) + 1

Forms

ω = ω(x , c)

A form ω can be viewed as a superfunction of x ’s and c ’s

Exterior derivative

d = c i
∂

∂x i
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Poincaré Lemma

Closed

dω = 0

NB! 0-forms are non-trivial cohomology. No 0-forms allowed.

deg(ω) ≥ 1 ω = ω(0)︸︷︷︸
=0

⊕ω(1) ⊕ ω(2) ⊕ . . .

⇓

Exact

∃ locally (r−1)-form η = η(x , c) : ω = dη
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Fine print

Our proof technique works in the category of (real) analytic
superfcts rather than thecategory of smooth C∞ superfcts.

Considers an arbitrary fixed point x(0).

Restricts to a sufficiently small neighborhood around x(0) if
necessarily.

Assume by change of coordinates that the fixed point x(0) = 0
is zero.
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Exterior Derivative

d = c i
∂

∂x i

Fermionic

ε(d) = 1

1st order

order(d) = 1

Nilpotent

2d2 = [d , d ] = 0

[A,B] = AB − (−1)εAεBBA denotes the supercommutator.
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Euler Vector Field

Euler vector field

X = X i ∂

∂x i
X i = x i
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Poincaré Lemma
Bi-Poincaré Lemma
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Contraction

Contraction

Xy = iX = i = x i
∂

∂c i

Fermionic

ε(i) = 1

1st order

order(i) = 1

Nilpotent

2i2 = [i , i ] = 0

Fermionic Duality

i = x i
∂

∂c i
is dual to d = c i

∂

∂x i
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Lie Derivative

Lie derivative

LX = L = [d , i ] = x i
∂

∂x i
+ c i

∂

∂c i
= Nx + Nc

Lie derivative L = [d , i ] = [d , x i
∂

∂c i
]

= [d , x i ]
∂

∂c i
+ x i [d ,

∂

∂c i
]

= [d , x i ]
∂

∂c i
+ x i [

∂

∂c i
, d ] d = c i

∂

∂x i

= c i
∂

∂c i
+ x i

∂

∂x i
Super Euler vector field

= Nc + Nx

Bosonic ε(L) = 0 order(L) = 1
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Lie Derivative as Super Euler vector field

Lω(x , c) = (Nx + Nc)ω(x , c)

Contraction/Homotopy Op

L−1ω(x , c) =
1

Nx + Nc

ω(x , c) =

∫ 1

0

dt

t
ω(tx , tc)

∫ 1

0
dt tn =

1

n + 1

∫ 1

0

dt

t
tn =

1

n
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Poincaré Lemma

Closed

ω = ω(x , c) dω = 0

No 0-form allowed

deg(ω) ≥ 1 ω = ω(0)︸︷︷︸
=0

⊕ω(1) ⊕ ω(2) ⊕ . . .

def η = iL−1ω = L−1iω

Proof

dη = dL−1iω = L−1diω = L−1[d , i ]ω = L−1Lω = ω exact
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Coordinates

Triple

x = (x1, . . . , xn) y = (y1, . . . , yn) c = (c1, . . . , cn)

c ’s have opposite Grassmann parity of the x ’s and y ’s

ε(x i ) = ε(y i ) = ε(c i ) + 1

To not clog slides with Grassmann sign factors, let us simplify:

Bosonic Bosonic Fermionic

ε(x i ) = 0 ε(y i ) = 0 ε(c i ) = 1

The theory works more generally in a superized formalism.
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Two Exterior Derivatices

Exterior Derivatives

d1 = c i
∂

∂x i
d2 = c i

∂

∂y i
d = d1d2 2nd order

Fermionic ε(d1) = 1 = ε(d2) ε(d) = 0 Bosonic

Supercommute

(d1)2 = 0 (d2)2 = 0 d1d2 + d2d1 = 0

[da, db] = 0 a, b ∈ {1, 2}
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Closedness Relations

f =
1

2
fij(x , y)c ic j 2-form fji = −fij

closed d1f = 0 ⇔
∑

cycl. i ,j ,k

∂fjk(x , y)

∂x i
= 0

closed d2f = 0 ⇔
∑

cycl. i ,j ,k

∂fjk(x , y)

∂y i
= 0

What is the most general solution to f locally?

∃ loc. 0-form g = g(x , y) : f = dg exact ⇔ fij =
∂2g(x , y)

∂x i∂y j
−(i ↔ j)
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Bi-Poincaré Lemma

ω = ω(x , y , c) d = d1d2

Closed

d1ω = 0 = d2ω

Exact

∃ locally form η = η(x , y , c) : ω = dη exact

NB! 0- and 1-forms are non-trivial cohomology. No 0- and 1-forms
allowed.

deg(ω) ≥ 2 ω = ω(0)︸︷︷︸
=0

⊕ ω(1)︸︷︷︸
=0

⊕ω(2) ⊕ . . .
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Two Contractions

Contractions

i1 = x i
∂

∂c i
i2 = y i

∂

∂c i
i = i2i1 2nd order

Fermionic ε(i1) = 1 = ε(i2) ε(i) = 0 Bosonic

Supercommute

(i1)2 = 0 (i1)2 = 0 i1i2 + i2i1 = 0

[ia, ib] = 0 a, b ∈ {1, 2}
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Four Lie Derivatives

Lie derivatives

Lab = [da, ib] a, b ∈ {1, 2}

Bosonic ε(Lab) = 0

L1
1 = Nx + Nc L2

2 = Ny + Nc ← Diagonal

Nx = x i
∂

∂x i
Ny = y i

∂

∂y i
Nc = c i

∂

∂c i

L2
1 = x i

∂

∂y i
= J+ L1

2 = y i
∂

∂x i
= J− ← Not diagonal

QM paradigm: Look for max. com. set of observables!
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Lie Algebras

gl(2,C) Lie alg

[Lab,Lcd ] = δadLcb − δcbLad

gl(2,C)︸ ︷︷ ︸
Lab

= sl(2,C)︸ ︷︷ ︸
Jα

⊕ C︸︷︷︸
L

J1 =
L2

1 + L1
2

2
J2 =

L2
1 − L1

2

2i
J3 =

L1
1 − L2

2

2
=

Nx − Ny

2

sl(2,C) Lie alg

[Jα, Jβ] = iεαβγJγ α, β, γ ∈ {1, 2, 3} ε123 = 1

L = Laa = Nx + Ny + 2Nc
L Casimir

[L,Lab] = 0
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Bi-Poincaré Lemma Strategy

d = d1d2 i = i2i1 2nd order

Def

3rd ord. L = [d , i ] = . . . = Λ + (. . .)bd
b

2nd ord. Λ =
L
2

(
L
2

+ 1

)
− J2︸︷︷︸

J2
1 +J2

2 +J2
3

[L,Lab] = 0 Casimir

[Λ,Lab] = 0 Casimir

Assumption

Assume Λ−1 exists

closed daω = 0 a ∈ {1, 2} def η = iΛ−1ω

Proof

dη = diΛ−1ω = (L + id)Λ−1ω = Λ−1L + idΛ−1ω
= Λ−1(Λ + (. . .)bd

b) + iΛ′−1dω = ω exact
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Algebra of Forms

A = A[[x , y , z ]]] = {ω = ω(x , y , c)}

=
∞⊕

nx ,ny ,nc=0

Anx ,ny ,nc
∞ dim vector space

Form

ω =
∞⊕

nx ,ny ,nc=0

ω(nx ,ny ,nc )

small letter=eigenvalues Capital Letter=Operator
nx = eigenvalue of Nx = x i ∂

∂x i

ny = eigenvalue of Ny = y i ∂
∂y i

nc = eigenvalue of Nc = c i ∂
∂c i
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Algebra of Forms as gl(2,C) Rep

Alg. of forms ↔ Hilbert space of states

A = A[[x , y , c]]

Constant zero-form ↔ vacuum

1 = |0〉 = Ω

Creation op
x i y j ck

Annihilation op

∂

∂x i
∂

∂y j
∂

∂ck

Generators Lab act on A A is ∞-dim rep
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Good Quantum Numbers nxy and nc

A =
∞⊕

nxy ,nc=0

Anxy ,nc
∞ dim vector space

Form

ω =
∞⊕

nxy ,nc=0

ω(nxy ,nc )

nxy = eigenvalue of Nx + Ny

nc = eigenvalue of Nc

[Nx + Ny ,Lab] = 0 [Nc ,Lab] = 0 Casimirs

Let nxy and nc be fixed numbers.

Generators Lab act on Anxy ,nc
Anxy ,nc

is finite-dim rep
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Fixed Anxy ,nc

nxy = eigenvalue of Nx + Ny

nc = eigenvalue of Nc

nxy + 2nc = ` = eigenvalue of L L = Nx +Ny + 2Nc

sl(2,C) Representation Theory

Finite dim ⇒ completely reducible

Anxy ,nc
=

⊕
j∈ 1

2
N0

µjV j

V j = sl(2,C) irrep µj ∈ N0 multiplicity
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Strategy: Enough to study:

Alg. of forms

A =
∞⊕

nxy ,nc=0

Anxy ,nc
∞ dim rep

∪
Fixed good quantum numbers nxy , nc , `

Anxy ,nc
=

⊕
j∈ 1

2
N0

µjV j finite-dim rep

∪
Fixed more good quantum numbers j , λ

Fixed irrep V j finite-dim irrep
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Fixed irrep V j

m = eigenvalue of J3 J3 =
Nx − Ny

2
|m| ≤

nxy
2

j(j+1) = eigenvalue of J2 m ∈ {−j , 1−j , . . . , j−1, j} j ≤
nxy
2

λ = eigenvalue of Λ Λ =
L
2

(
L
2

+ 1

)
− J2

Proof

λ =
`

2

(
`

2
+ 1

)
− j(j + 1)

≥
(nxy

2
+ nc

)(nxy
2

+ nc + 1
)
−

nxy
2

(nxy
2

+ 1
)

= (nxy + nc) (nc − 1)︸ ︷︷ ︸
>0

> 0 because nc = deg(ω) ≥ 2
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Bi-Poincaré Lemma

Lemma
Λ is diagonalizable with Spec(Λ) > 0 on forms ω with deg(ω) ≥ 2.

Bi-Poincaré Lemma
d1ω = 0
d2ω = 0

deg(ω) ≥ 2

 ⇒ locally ω = dη exact

d = d1d2
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Complex Hodge Theory: Dolbeault Op

form ω = ω(z , z̄ , dz , dz̄) Dolbeault op [∂, ∂̄] = 0, ∂2 = 0, ∂̄2 = 0.

Poincaré Lemma

∂̄ω = 0 ⇒ locally ω = ∂̄η︸︷︷︸
exact

+ f (z , dz)︸ ︷︷ ︸
hol. form

η = īL̄−1ω

Bi-Poincaré Lemma

∂ω = 0
∂̄ω = 0

}
⇒ loc. ω = ∂∂̄η︸︷︷︸

exact

+ f (z , dz)︸ ︷︷ ︸
hol. form

+ g(z̄ , dz̄)︸ ︷︷ ︸
antihol. form

η = ī iL̄−1L−1ω
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Real Hodge Theory

form ω = ω(x , c) c i = dx i

ext. deriv. d = c i
∂

∂x i
1st order

adj. ? d? ∼ d† =
1
√
g

∂

∂x i
√
gg ij ∂

∂c j
2nd order BV odd Lapl.

d2 = 0 (d†)2 = 0 [d†, d ] = ∆ Beltrami Lapl.

Bi-Poincaré Lemma
dω = 0
d†ω = 0

}
⇒ locally ω = ∆η exact
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Poisson Manifold with Local Coordinates

Manifold M.

Poisson bracket {·, ·}.

PB has intrisic Grassmann parity ε =

{
0 even PB
1 odd PB

Locally there exist coordinates z I of Grassmann parity εI .

Poisson bivector πIJ = {z I , zJ} may depend on zK .

To not clog slides with Grassmann sign factors, let us simplify:

Bosonic Coordinates

ε(Z I ) = 0

Bosonic PB

ε = 0

The theory works more generally in a superized formalism.
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Darboux Theorem

Regular Poisson bivector πIJ . Assume rank(πIJ) = constant.

Darboux theorem
Locally there exist Bosonic Darboux coordinates:

positions qi momenta pj Casimirs cα

{qi , pj} = δij = −{pj , qi}

All other fund. PB = 0, i.e.,

{qi , qj} = 0 {pi , pj} = 0 {cα, ·} = 0

Morale: Jac. id. are the integrability cond. for ∃ Darboux coord.
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Two Poisson Brackets

{·, ·}1 {·, ·}2

Compatibility cond = 6-term Mixed Jac Id∑
cycl. f ,g ,h

{{f , g}1, h}2 = −(1↔ 2)

Sym. Jac. id. are the main ammunition for what to follow.

Used in integrable systems to recursively generate infinitely
many conserved charges (Magri’s method 1978).

Used in BRST/anti-BRST triplectic quantization (1995).

Questions: Does there exists common Darboux coordinates?

Gelfand and Zakharevich (2000) investigate case with at least
one non-deg. bracket.
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Triplectic manifold

Def. triplectic manifold (M; {·, ·}a)
3n-dimensional manifold M
equipped with two Poisson brackets {·, ·}1 and {·, ·}2

that both have rank 2n out of 3n possible,

that are compatible, i.e., the mixed Jac. id.

that are jointly non-degenerate, which means that there are
no common Casimirs.

and that have mutually involutive Casimirs, which means that
the Casimirs with respect to one bracket are in involution with
respect to the other bracket, and vice-versa.
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Base manifold N

Define notation: ck = Casimirs for 1st PB.

Define notation: pj = Casimirs for 2nd PB.

Base manifold N
N = 2n dim manifold of Casimir variables pj and ck .

Fiber bundle

M → N

37/45



Poincaré Lemma
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Two Paracomplex Structures Σ and P

A complex structure J : TN → TN J2 = −1

A paracomplex structure P : TN → TN P2 = 1
= local product structure

1st Paracomplex str.

Σ pj c j

pi δji 0

c i 0 −δji

2nd Paracomplex str.

P pj c j

pi 0 (E−1)j i
c i E j

i 0

Sym. Jac. Id. ⇒ P integrable

{Σ,P}+ = 0 anticommute

J := PΣ complex structure

Triple (Σ,P, J) para-hypercomplex structure
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Poincaré Lemma
Bi-Poincaré Lemma

Hodge Theory
Bi-Poisson Structures

One Poisson Bracket
Bi-Poisson Structures
Para-Hypercomplex Structure
Bi-Darboux Theorem

Para-Hypercomplex Structure

Thm
There is a one-to-one correspondence between triplectic manifolds
and twisted para-hypercomplex manifolds

A para-Hypercomplex manifold is endowed with an Obata
connection ∇, i.e., unique torsionfree connection compatible
with the para-hypercomplex structure.

Twisting refers a two-form field F ij .

Hyper-paracomplex

SO+(2, 1;R) sym

Bi-Poisson

SL(2,R) sym
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Caratheodory-Jacobi-Lie (CJL) Theorem

Define notation: ck = Casimirs for 1st PB.

Define notation: pj = Casimirs for 2nd PB.

CJL Theorem implies ∃qi so 1st PB on Darboux form.

CJL does this without changing the c i ’s and pj ’s.

1 PB {·, ·}1

qj pj c j

qi 0 δij 0

pi -δji 0 0
c i 0 0 0

2 PB {·, ·}2

qj pj c j

qi F ij 0 E i
j

pi 0 0 0
c i -E j

i 0 0
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Poincaré Lemma
Bi-Poincaré Lemma
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Canonical Transformations for 1st PB

Only two remaining non-trivial matrix structures

E i
j = {qi , c j}2 = E i

j(p, c) F ij = {qi , qj}2 = F ij(p, c)

Can we also get 2nd PB on Darboux form without spoiling
Darboux form for 1st PB?

Only CT for 1st PB allowed

c i are passive spectators

locally F3 = F3(q′, p) type CT

Generator F3 must be linear in q′

−F3 = Aj(p)q′j + B(p)
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Poincaré Lemma
Bi-Poincaré Lemma
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Bi-Darboux Theorem

Bi-Darboux Theorem
Necessary and Sufficient condition for Bi-Darboux coordinates on
triplectic manifold is that

(in triplectic language) The E i
k matrix factorizes

E i
k(p, c) = P i

j(p)C j
k(c)

(in para-hypercomplex language) The Obata connection ∇ is
flat.
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F ij Matrix?

Closed

F ij = {qi , qj}2 closed because of mixed Jac. id.

∑
cycl. i ,j ,k

∂F jk(p, c)

∂pi
= 0

∑
cycl. i ,j ,k

∂F jk(p, c)

∂c i
= 0

Is it possible to make F ij matrix vanish by CT?

F ij(p, c) =
∂2B(p, c)

∂c i∂pj
− (i ↔ j) exact

Yes, because of Bi-Poincaré Lemma.
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Conclusions

We have proved a Bi-Poincaré Lemma for triples of variables.

Rather than the standard method of using Fermionic duality,
the new proof relies heavily on sl(2,C) rep. theory; morally a
kind of triality.

We have proved a Bi-Darboux Theorem for triplectic
manifolds.

This strengthen the geometric foundation of triplectic
quantization.

This may infuse renewed interests and developments in
triplectic quantization.

We have proved a one-to-one correspondence between
triplectic manifolds and twisted para-hypercomplex manifolds.
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